Difference between revisions of "2008 AMC 12A Problems/Problem 12"

m (wik/cat)
m (Solution)
 
(9 intermediate revisions by 4 users not shown)
Line 2: Line 2:
 
A [[function]] <math>f</math> has [[domain]] <math>[0,2]</math> and [[range]] <math>[0,1]</math>. (The notation <math>[a,b]</math> denotes <math>\{x:a \le x \le b \}</math>.) What are the domain and range, respectively, of the function <math>g</math> defined by <math>g(x)=1-f(x+1)</math>?
 
A [[function]] <math>f</math> has [[domain]] <math>[0,2]</math> and [[range]] <math>[0,1]</math>. (The notation <math>[a,b]</math> denotes <math>\{x:a \le x \le b \}</math>.) What are the domain and range, respectively, of the function <math>g</math> defined by <math>g(x)=1-f(x+1)</math>?
  
<math>\textbf{(A)}\ [ - 1,1],[ - 1,0] \qquad \textbf{(B)}\ [ - 1,1],[0,1] \qquad \textbf{(C)}\ [0,2],[ - 1,0] \qquad \textbf{(D)}\ [1,3],[ - 1,0] \qquad \textbf{(E)}\ [1,3],[0,1]</math>
+
<math>\mathrm{(A)}\ [-1,1],[-1,0]\qquad\mathrm{(B)}\ [-1,1],[0,1]\qquad\textbf{(C)}\ [0,2],[-1,0]\qquad\mathrm{(D)}\ [1,3],[-1,0]\qquad\mathrm{(E)}\ [1,3],[0,1]</math>
  
==Solution==
+
==Solution 1==
 
<math>g(x)</math> is defined if <math>f(x + 1)</math> is defined. Thus the domain is all <math>x| x + 1 \in [0,2] \rightarrow x \in [ - 1,1]</math>.  
 
<math>g(x)</math> is defined if <math>f(x + 1)</math> is defined. Thus the domain is all <math>x| x + 1 \in [0,2] \rightarrow x \in [ - 1,1]</math>.  
  
 
Since <math>f(x + 1) \in [0,1]</math>, <math>- f(x + 1) \in [ - 1,0]</math>. Thus <math>g(x) = 1 - f(x + 1) \in [0,1]</math> is the range of <math>g(x)</math>.  
 
Since <math>f(x + 1) \in [0,1]</math>, <math>- f(x + 1) \in [ - 1,0]</math>. Thus <math>g(x) = 1 - f(x + 1) \in [0,1]</math> is the range of <math>g(x)</math>.  
  
Thus the answer is <math>[ - 1,1],[0,1] \Rightarrow B</math>.
+
Thus the answer is <math>[- 1,1],[0,1] \longrightarrow \boxed{B}</math>.
 +
 
 +
==Solution 2==
 +
Look at the vertical and horizontal translations, and we rewrite the function to a more recognizable <math>-f(x+1) + 1</math> to help us visualize.
 +
 
 +
Horizontal: There is one horizontal shift one unit to the left from the <math>(x+1)</math> component making the domain <math>[-1, 1]</math>
 +
 
 +
Vertical: There is one vertical mirror from the <math>-f</math> causing the range to become <math>[-1, 0]</math> and then a vertical shift one unit upward from the <math>+ 1</math> causing the range to become <math>[0, 1]</math>.
 +
 
 +
This generates the answer of <math>\mathrm{(B)}</math>.
 +
 
 +
~PhysicsDolphin
  
 
==See Also==
 
==See Also==
Line 15: Line 26:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 06:31, 2 July 2024

Problem

A function $f$ has domain $[0,2]$ and range $[0,1]$. (The notation $[a,b]$ denotes $\{x:a \le x \le b \}$.) What are the domain and range, respectively, of the function $g$ defined by $g(x)=1-f(x+1)$?

$\mathrm{(A)}\ [-1,1],[-1,0]\qquad\mathrm{(B)}\ [-1,1],[0,1]\qquad\textbf{(C)}\ [0,2],[-1,0]\qquad\mathrm{(D)}\ [1,3],[-1,0]\qquad\mathrm{(E)}\ [1,3],[0,1]$

Solution 1

$g(x)$ is defined if $f(x + 1)$ is defined. Thus the domain is all $x| x + 1 \in [0,2] \rightarrow x \in [ - 1,1]$.

Since $f(x + 1) \in [0,1]$, $- f(x + 1) \in [ - 1,0]$. Thus $g(x) = 1 - f(x + 1) \in [0,1]$ is the range of $g(x)$.

Thus the answer is $[- 1,1],[0,1] \longrightarrow \boxed{B}$.

Solution 2

Look at the vertical and horizontal translations, and we rewrite the function to a more recognizable $-f(x+1) + 1$ to help us visualize.

Horizontal: There is one horizontal shift one unit to the left from the $(x+1)$ component making the domain $[-1, 1]$

Vertical: There is one vertical mirror from the $-f$ causing the range to become $[-1, 0]$ and then a vertical shift one unit upward from the $+ 1$ causing the range to become $[0, 1]$.

This generates the answer of $\mathrm{(B)}$.

~PhysicsDolphin

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png