|
|
(101 intermediate revisions by 67 users not shown) |
Line 1: |
Line 1: |
− | === Background ===
| + | #REDIRECT[[Vieta's formulas]] |
− | Let <math>P(x)={a_n}x^n+{a_{n-1}}x^{n-1}+\cdots+{a_1}x+a_0</math>,
| |
− | where the coefficient of <math>x^{i}</math> is <math>{a}_i</math>. As a consequence of the [[Fundamental Theorem of Algebra]], we can also write
| |
− | <center><math>P(x)=a_n(x-r_1)(x-r_2)\cdots(x-r_n)</math>,</center>
| |
− | where <math>{r}_i</math> are the roots of <math>P(x)</math>.
| |
− | | |
− | Let <math>{\sigma}_k</math> be the <math>{}{k}</math>th [[symmetric sum]].
| |
− | | |
− | === Statement ===
| |
− | Vieta's says that <math>\sigma_k = (-1)^k\cdot \frac{a_{n-k}}{a_n{}}</math>, | |
− | | |
− | for <math>{}1\le k\le {n}</math>.
| |
− | | |
− | === Proof ===
| |
− | | |
− | [needs to be added]
| |