Difference between revisions of "2000 AMC 10 Problems/Problem 7"
(16 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
+ | In rectangle <math>ABCD</math>, <math>AD=1</math>, <math>P</math> is on <math>\overline{AB}</math>, and <math>\overline{DB}</math> and <math>\overline{DP}</math> trisect <math>\angle ADC</math>. What is the perimeter of <math>\triangle BDP</math>? | ||
+ | |||
<asy> | <asy> | ||
draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); | draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); | ||
Line 13: | Line 17: | ||
label("$D$",(0,0),SW); | label("$D$",(0,0),SW); | ||
label("$P$",(1.3,2),N); | label("$P$",(1.3,2),N); | ||
+ | </asy> | ||
+ | |||
+ | <math>\textbf{(A)}\ 3+\frac{\sqrt{3}}{3} \qquad\textbf{(B)}\ 2+\frac{4\sqrt{3}}{3} \qquad\textbf{(C)}\ 2+2\sqrt{2} \qquad\textbf{(D)}\ \frac{3+3\sqrt{5}}{2} \qquad\textbf{(E)}\ 2+\frac{5\sqrt{3}}{3}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | <asy> | ||
+ | draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); | ||
+ | draw((0,0)--(1.3,2)); | ||
+ | draw((0,0)--(3.4,2)); | ||
+ | dot((0,0)); | ||
+ | dot((0,2)); | ||
+ | dot((3.4,2)); | ||
+ | dot((3.4,0)); | ||
+ | dot((1.3,2)); | ||
+ | label("$A$",(0,2),NW); | ||
+ | label("$B$",(3.4,2),NE); | ||
+ | label("$C$",(3.4,0),SE); | ||
+ | label("$D$",(0,0),SW); | ||
+ | label("$P$",(1.3,2),N); | ||
+ | label("$1$",(0,1),W); | ||
+ | label("$2$",(1.7,1),SE); | ||
+ | label("$\frac{\sqrt{3}}{3}$",(0.65,2),N); | ||
+ | label("$\frac{2\sqrt{3}}{3}$",(0.85,1),NW); | ||
+ | label("$\frac{2\sqrt{3}}{3}$",(2.35,2),N); | ||
+ | label("$\sqrt{3}$",(1.7,0),S); | ||
+ | label("$2$",(3,1),W); | ||
</asy> | </asy> | ||
<math>AD=1</math>. | <math>AD=1</math>. | ||
− | Since <math>\angle ADC</math> is trisected, <math>\angle ADP= \angle PDB= \angle BDC=30</math>. | + | Since <math>\angle ADC</math> is trisected, <math>\angle ADP= \angle PDB= \angle BDC=30^\circ</math>. |
+ | |||
+ | Thus, <math>PD=\frac{2\sqrt{3}}{3}</math> | ||
− | |||
<math>DB=2</math> | <math>DB=2</math> | ||
+ | |||
<math>BP=\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}</math>. | <math>BP=\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}</math>. | ||
− | Adding, <math>2+\frac{4\sqrt{3}}{3}</math>. | + | Adding, we get <math>\boxed{\textbf{(B) } 2+\frac{4\sqrt{3}}{3}}</math>. |
+ | |||
+ | == Solution 2 == | ||
+ | After computing <math>\overline{BP} = \frac{2\sqrt{3}}{3},</math> observe that triangle <math>\triangle BPD</math> is isosceles with <math>\angle DPB = \angle BPD.</math> Therefore, using <math>120 - 30 - 30</math> triangle properties, we see that the perimeter is just <math>(2+ \sqrt{3}) \cdot \frac{2\sqrt{3}}{3} = \boxed{\textbf{(B) } 2+\frac{4\sqrt{3}}{3}}.</math> | ||
+ | |||
+ | ~Sliced_Bread | ||
+ | |||
+ | ==Video Solution by Daily Dose of Math== | ||
+ | |||
+ | https://youtu.be/wITXxUtZj3E?si=KuLEI9SeOFZTw05Y | ||
+ | |||
+ | ~Thesmartgreekmathdude | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2000|num-b=6|num-a=8}} | ||
+ | {{MAA Notice}} | ||
− | + | [[Category:Introductory Geometry Problems]] |
Latest revision as of 23:40, 14 July 2024
Problem
In rectangle , , is on , and and trisect . What is the perimeter of ?
Solution
.
Since is trisected, .
Thus,
.
Adding, we get .
Solution 2
After computing observe that triangle is isosceles with Therefore, using triangle properties, we see that the perimeter is just
~Sliced_Bread
Video Solution by Daily Dose of Math
https://youtu.be/wITXxUtZj3E?si=KuLEI9SeOFZTw05Y
~Thesmartgreekmathdude
See Also
2000 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.