Difference between revisions of "1988 AJHSME Problems/Problem 3"

(New page: ==Problem== <math>\frac{1}{10}+\frac{2}{20}+\frac{3}{30} = </math> <math>\text{(A)}\ .1 \qquad \text{(B)}\ .123 \qquad \text{(C)}\ .2 \qquad \text{(D)}\ .3 \qquad \text{(E)}\ .6</math> ...)
 
 
(One intermediate revision by one other user not shown)
Line 7: Line 7:
 
==Solution==
 
==Solution==
  
Each of the fractions simplifies to <math>\frac{1}{10}</math>, so this sum is
+
Each of the [[Fraction|fractions]] simplify to <math>\frac{1}{10}</math>, so this [[sum]] is
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
\frac{1}{10}+\frac{1}{10}+\frac{1}{10} &= \frac{3}{10} \\
 
\frac{1}{10}+\frac{1}{10}+\frac{1}{10} &= \frac{3}{10} \\
Line 15: Line 15:
 
==See Also==
 
==See Also==
  
[[1988 AJHSME Problems]]
+
{{AJHSME box|year=1988|num-b=2|num-a=4}}
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 22:54, 4 July 2013

Problem

$\frac{1}{10}+\frac{2}{20}+\frac{3}{30} =$

$\text{(A)}\ .1 \qquad \text{(B)}\ .123 \qquad \text{(C)}\ .2 \qquad \text{(D)}\ .3 \qquad \text{(E)}\ .6$

Solution

Each of the fractions simplify to $\frac{1}{10}$, so this sum is \begin{align*} \frac{1}{10}+\frac{1}{10}+\frac{1}{10} &= \frac{3}{10} \\ &= .3 \rightarrow \boxed{\text{D}} \end{align*}

See Also

1988 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png