Difference between revisions of "1988 AJHSME Problems/Problem 6"
(New page: ==Problem== <math>\frac{(.2)^3}{(.02)^2} =</math> <math>\text{(A)}\ .2 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 10 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 20</math> ==Solution== Convert...) |
Sakshamsethi (talk | contribs) (→Solution 2) |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
− | Converting the decimals to fractions gives us <math>\frac{(.2)^3}{(.02)^2} =\frac{\left( \frac{1}{5}\right)^3}{\left(\frac{1}{50}\right)^2}=\frac{50^2}{5^3}=\frac{2500}{125}=20\Rightarrow \mathrm{(E)}</math>. | + | Converting the [[decimal|decimals]] to [[fraction|fractions]] gives us <math>\frac{(.2)^3}{(.02)^2} =\frac{\left( \frac{1}{5}\right)^3}{\left(\frac{1}{50}\right)^2}=\frac{50^2}{5^3}=\frac{2500}{125}=20\Rightarrow \mathrm{(E)}</math>. |
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | We expand <math>\frac{(0.2)^3}{(0.02)^2}</math>, and get <math>\frac{(0.2) \times (0.2) \times (0.2)}{(0.02) \times (0.02)}</math>. The two <math>0.02</math>'s "cancel" out with the two <math>0.2</math>'s, leaving the fraction as: <math>(10) \times (10) \times (0.2)</math>. Using basic calculations, we compute this expression to get <math>20\Rightarrow \mathrm{(E)}</math>. | ||
+ | |||
+ | ~sakshamsethi | ||
==See Also== | ==See Also== | ||
− | [[ | + | {{AJHSME box|year=1988|num-b=5|num-a=7}} |
+ | [[Category:Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 11:04, 28 July 2020
Contents
Problem
Solution
Converting the decimals to fractions gives us .
Solution 2
We expand , and get . The two 's "cancel" out with the two 's, leaving the fraction as: . Using basic calculations, we compute this expression to get .
~sakshamsethi
See Also
1988 AJHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.