|
|
(9 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2010_AMC_12A_Problems/Problem_8]] |
− | Triangle <math>ABC</math> has <math>AB=2 \cdot AC</math>. Let <math>D</math> and <math>E</math> be on <math>\overline{AB}</math> and <math>\overline{BC}</math>, respectively, such that <math>\angle BAE = \angle ACD</math>. Let <math>F</math> be the intersection of segments <math>AE</math> and <math>CD</math>, and suppose that <math>\triangle CFE</math> is equilateral. What is <math>\angle ACB</math>?
| |
− | | |
− | <math>\textbf{(A)}\ 60^\circ \qquad \textbf{(B)}\ 75^\circ \qquad \textbf{(C)}\ 90^\circ \qquad \textbf{(D)}\ 105^\circ \qquad \textbf{(E)}\ 120^\circ</math>
| |
− | | |
− | == Solution ==
| |
− | Let <math>\angle BAE = \angle ACD = x</math>.
| |
− | | |
− | <cmath>\begin{align*}\angle BCD &= \angle AEC = 60^\circ\\
| |
− | \angle EAC + \angle FCA + \angle ECF + \angle AEC &= \angle EAC + x + 60^\circ + 60^\circ = 180^\circ\\
| |
− | \angle EAC &= 60^\circ - x\\
| |
− | \angle BAC &= \angle EAC + \angle BAE = 60^\circ - x + x = 60^\circ\end{align*}</cmath>
| |
− | | |
− | Since <math>\frac{AC}{AB} = \frac{1}{2}</math>, <math>\angle BCA = \boxed{90^\circ\ \textbf{(C)}}</math>
| |
− | | |
− | == See also ==
| |
− | {{AMC10 box|year=2010|num-b=13|num-a=15|ab=A}}
| |
− | | |
− | [[Category:Introductory Geometry Problems]] | |