Difference between revisions of "1999 AHSME Problems/Problem 15"

m (Fixed nonparsed $LaTeX$)
(Solution 2 (Alternate, Slightly Longer))
 
(17 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{solution}}
 
 
 
==Problem==
 
==Problem==
  
Line 11: Line 9:
 
\textbf{(E)}\ 0.5</math>
 
\textbf{(E)}\ 0.5</math>
  
==Solution==
+
==Solution 1 (Fastest)==
 +
 
 +
<math>(\sec x - \tan x)(\sec x + \tan x) = \sec^{2} x - \tan^{2} x = 1</math>, so <math>\sec x + \tan x = \boxed{\textbf{(E)}\ 0.5}</math>.
 +
 
 +
==Solution 2 (Alternate, Slightly Longer)==
 +
Note that <math>\sec x - \tan x = (1-\sin x)/\cos x</math> and <math>\sec x + \tan x = (1+\sin x)/\cos x</math>. Let <math>(1+\sin x)/\cos x = y</math>. Multiplying, we get <math>(1-\sin^{2}x)/\cos^{2}x = 1</math>.Then, <math>2y = 1</math>. <math>\sec x + \tan x =
 +
\boxed{\textbf{(E)}\ 0.5}</math>. ~songmath20 
 +
Edited 5.1.2023
  
 
==See Also==
 
==See Also==
  
 
{{AHSME box|year=1999|num-b=14|num-a=16}}
 
{{AHSME box|year=1999|num-b=14|num-a=16}}
 +
 +
[[Category:Introductory Trigonometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 18:36, 1 May 2023

Problem

Let $x$ be a real number such that $\sec x - \tan x = 2$. Then $\sec x + \tan x =$

$\textbf{(A)}\ 0.1 \qquad  \textbf{(B)}\ 0.2 \qquad  \textbf{(C)}\ 0.3 \qquad  \textbf{(D)}\ 0.4 \qquad  \textbf{(E)}\ 0.5$

Solution 1 (Fastest)

$(\sec x - \tan x)(\sec x + \tan x) = \sec^{2} x - \tan^{2} x = 1$, so $\sec x + \tan x = \boxed{\textbf{(E)}\ 0.5}$.

Solution 2 (Alternate, Slightly Longer)

Note that $\sec x - \tan x = (1-\sin x)/\cos x$ and $\sec x + \tan x = (1+\sin x)/\cos x$. Let $(1+\sin x)/\cos x = y$. Multiplying, we get $(1-\sin^{2}x)/\cos^{2}x = 1$.Then, $2y = 1$. $\sec x + \tan x =  \boxed{\textbf{(E)}\ 0.5}$. ~songmath20 Edited 5.1.2023

See Also

1999 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png