Difference between revisions of "1984 AHSME Problems/Problem 13"
(Created page with "==Problem== <math> \frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}+\sqrt{5}} </math> equals <math> \mathrm{(A) \ }\sqrt{2}+\sqrt{3}-\sqrt{5} \qquad \mathrm{(B) \ }4-\sqrt{2}-\sqrt{3} \qquad ...") |
(→Solution) |
||
(One intermediate revision by one other user not shown) | |||
Line 27: | Line 27: | ||
<math> =\sqrt{2}+\sqrt{3}-\sqrt{5}, \boxed{\text{A}} </math>. | <math> =\sqrt{2}+\sqrt{3}-\sqrt{5}, \boxed{\text{A}} </math>. | ||
+ | ==Solution 2== | ||
+ | Multiply the numerator and denominator by <math>\sqrt{2}+\sqrt{3}-\sqrt{5}</math>. We get <math>\frac{(2\sqrt{6})(\sqrt{2}+\sqrt{3}-\sqrt{5})}{(\sqrt{2}+\sqrt{3}+\sqrt{5})(\sqrt{2}+\sqrt{3}-\sqrt{5})}</math> | ||
+ | |||
+ | <cmath>\frac{(2\sqrt{6})(\sqrt{2}+\sqrt{3}-\sqrt{5})}{2+3-5+2\sqrt{6}+\sqrt{10}-\sqrt{10}+\sqrt{15}-\sqrt{15}}=\frac{(2\sqrt{6})(\sqrt{2}+\sqrt{3}-\sqrt{5})}{2\sqrt{6}}=\sqrt{2}+\sqrt{3}-\sqrt{5}</cmath> | ||
+ | <math>\boxed{A}</math> | ||
==See Also== | ==See Also== | ||
{{AHSME box|year=1984|num-b=12|num-a=14}} | {{AHSME box|year=1984|num-b=12|num-a=14}} | ||
+ | {{MAA Notice}} |
Latest revision as of 15:43, 1 March 2015
Contents
Problem
equals
Solution
Multiply the numerator and the denominator by to get
.
Now to get rid of the in the denominator. Multiply the numerator and denominator by to get
.
Solution 2
Multiply the numerator and denominator by . We get
See Also
1984 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.