Difference between revisions of "1984 AHSME Problems/Problem 4"
m (Created page with "==Problem== Points <math> B, C, F, E </math> are picked on a circle such that <math> BC||EF </math>. When <math> BC </math> is extended to the left, point <math> A </math> is...") |
Tecilis459 (talk | contribs) m (Add problem title) |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | |||
− | {{ | + | A rectangle intersects a circle as shown: <math>AB=4</math>, <math>BC=5</math>, and <math>DE=3</math>. Then <math>EF</math> equals: |
− | + | ||
+ | <asy>defaultpen(linewidth(0.7)+fontsize(10)); | ||
+ | pair D=origin, E=(3,0), F=(10,0), G=(12,0), H=(12,1), A=(0,1), B=(4,1), C=(9,1), O=circumcenter(B,C,F); | ||
+ | draw(D--G--H--A--cycle); | ||
+ | draw(Circle(O, abs(O-C))); | ||
+ | label("$A$", A, NW); | ||
+ | label("$B$", B, NW); | ||
+ | label("$C$", C, NE); | ||
+ | label("$D$", D, SW); | ||
+ | label("$E$", E, SE); | ||
+ | label("$F$", F, SW); | ||
+ | |||
+ | label("4", (2,0.85), N); | ||
+ | label("3", D--E, S); | ||
+ | label("5", (6.5,0.85), N); | ||
+ | </asy> | ||
+ | <math>\mathbf{(A)}\; 6\qquad \mathbf{(B)}\; 7\qquad \mathbf{(C)}\; \frac{20}3\qquad \mathbf{(D)}\; 8\qquad \mathbf{(E)}\; 9</math> | ||
==Solution== | ==Solution== | ||
<asy> | <asy> | ||
− | + | defaultpen(linewidth(0.7)+fontsize(10)); | |
− | + | pair D=origin, E=(3,0), F=(10,0), X=(12,0), Y=(12,1), A=(0,1), B=(4,1), C=(9,1), O=circumcenter(B,C,F), G=foot(E,A,C), H=foot(B,D,F), I=foot(C,D,F); | |
− | + | draw(D--X--Y--A--cycle); | |
− | + | draw(Circle(O, abs(O-C))); | |
− | + | label("$A$", A, NW); | |
− | + | label("$B$", B, N); | |
− | + | label("$C$", C, NE); | |
− | draw( | + | label("$D$", D, SW); |
− | + | label("$E$", E, S); | |
− | draw(( | + | label("$F$", F, S); |
− | label("$A$", | + | label("$G$", G, N); |
− | label("$B$", | + | label("$H$", H, S); |
− | label("$C$", | + | label("$I$", I, S); |
− | label("$D$", | + | |
− | label("$E$", | + | label("4", (2,0.85), N); |
− | label("$F$", | + | label("3", D--E, S); |
− | label("$G$", | + | label("5", (6.5,0.85), N); |
− | label("$H$", | + | draw(E--G^^H--B^^I--C, linetype("4 4")); |
− | label("$I$", | ||
− | label(" | ||
− | label(" | ||
− | label(" | ||
</asy> | </asy> | ||
− | Draw <math> BE </math> and <math> CF </math>, forming a [[trapezoid]]. Since it's cyclic, this trapezoid must be [[Isosceles trapezoid|isosceles]]. Also, drop [[Altitude|altitudes]] from <math> E </math> to <math> AC </math>, <math> B </math> to <math> DF </math>, and <math> C </math> to <math> DF </math>, and let the feet of these altitudes be <math> G </math>, <math> H </math>, and <math> I </math> respectively. <math> AGED </math> is a [[rectangle]] since it has <math> 4 </math> [[Right angle|right angles]]. Therefore, <math> AG=DE=3 </math>, and <math> GB=4-3=1 </math>. By the same logic, <math> GBHE </math> is also a rectangle, and <math> EH=GB=1 </math>. <math> BH=CI </math> since they're both altitudes to a trapezoid, and <math> BE=CF </math> since the trapezoid is isosceles. Therefore, <math> \ | + | Draw <math> BE </math> and <math> CF </math>, forming a [[trapezoid]]. Since it's cyclic, this trapezoid must be [[Isosceles trapezoid|isosceles]]. Also, drop [[Altitude|altitudes]] from <math> E </math> to <math> AC </math>, <math> B </math> to <math> DF </math>, and <math> C </math> to <math> DF </math>, and let the feet of these altitudes be <math> G </math>, <math> H </math>, and <math> I </math> respectively. <math> AGED </math> is a [[rectangle]] since it has <math> 4 </math> [[Right angle|right angles]]. Therefore, <math> AG=DE=3 </math>, and <math> GB=4-3=1 </math>. By the same logic, <math> GBHE </math> is also a rectangle, and <math> EH=GB=1 </math>. <math> BH=CI </math> since they're both altitudes to a trapezoid, and <math> BE=CF </math> since the trapezoid is isosceles. Therefore, <math> \triangle BHE \cong \triangle CIF </math> by HL [[congruence]], so <math> IF=EH=1 </math>. Also, <math> BCIH </math> is a rectangle from <math> 4 </math> right angles, and <math> HI=BC=5 </math>. Therefore, <math> EF=EH+HI+IF=1+5+1=\boxed{7} </math>. |
==See Also== | ==See Also== | ||
{{AHSME box|year=1984|num-b=3|num-a=5}} | {{AHSME box|year=1984|num-b=3|num-a=5}} | ||
+ | {{MAA Notice}} |
Latest revision as of 12:26, 16 July 2024
Problem
A rectangle intersects a circle as shown: , , and . Then equals:
Solution
Draw and , forming a trapezoid. Since it's cyclic, this trapezoid must be isosceles. Also, drop altitudes from to , to , and to , and let the feet of these altitudes be , , and respectively. is a rectangle since it has right angles. Therefore, , and . By the same logic, is also a rectangle, and . since they're both altitudes to a trapezoid, and since the trapezoid is isosceles. Therefore, by HL congruence, so . Also, is a rectangle from right angles, and . Therefore, .
See Also
1984 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.