Difference between revisions of "1997 AHSME Problems/Problem 19"
Talkinaway (talk | contribs) |
(Area solution) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 19: | Line 19: | ||
<math> \textbf{(A)}\ 2.18\qquad\textbf{(B)}\ 2.24\qquad\textbf{(C)}\ 2.31\qquad\textbf{(D)}\ 2.37\qquad\textbf{(E)}\ 2.41 </math> | <math> \textbf{(A)}\ 2.18\qquad\textbf{(B)}\ 2.24\qquad\textbf{(C)}\ 2.31\qquad\textbf{(D)}\ 2.37\qquad\textbf{(E)}\ 2.41 </math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | <asy> | ||
+ | defaultpen(linewidth(.8pt)); | ||
+ | dotfactor=3; | ||
+ | pair A = origin; | ||
+ | pair B = (1,0); | ||
+ | pair C = (0,sqrt(3)); | ||
+ | pair O = (2.33,2.33); | ||
+ | pair D = (2.33,0); | ||
+ | pair E = (0, 2.33); | ||
+ | pair F = (0.35, 1.1); | ||
+ | dot(A);dot(B);dot(C);dot(O);dot(D);dot(E);dot(F); | ||
+ | label("$A$",A,SW);label("$B$",B,SE);label("$C$",C,W);label("$O$",O,NW);label("$D$",D,SW);label("$E$",E,SW);label("$F$", F, W); | ||
+ | label("$1$",midpoint(A--B),S);label("$60^\circ$",B,2W + N); | ||
+ | draw((3,0)--A--(0,3)); | ||
+ | draw(B--C);draw(O--E);draw(O--D); | ||
+ | draw(Arc(O,2.33,163,288.5));</asy> | ||
+ | |||
+ | Draw radii <math>OE</math> and <math>OD</math> to the axes, and label the point of tangency to triangle <math>ABC</math> point <math>F</math>. Let the radius of the circle <math>O</math> be <math>r</math>. Square <math>OEAD</math> has side length <math>r</math>. | ||
+ | |||
+ | Because <math>BD</math> and <math>BF</math> are tangents from a common point <math>B</math>, <math>BD = BF</math>. | ||
+ | |||
+ | <math>AD = AB + BD</math> | ||
+ | |||
+ | <math>r = 1 + BD</math> | ||
+ | |||
+ | <math>r = 1 + BF</math> | ||
+ | |||
+ | Similarly, <math>CF = CE</math>, and we can write: | ||
+ | |||
+ | <math>AE = AC + CE</math> | ||
+ | |||
+ | <math>r = \sqrt{3} + CF</math> | ||
+ | |||
+ | Equating the radii lengths, we have <math>1 + BF = \sqrt{3} + CF</math> | ||
+ | |||
+ | This means <math>BF - CF = \sqrt{3} - 1</math> | ||
+ | |||
+ | <math>BF + CF = 2</math> by the 30-60-90 triangle. | ||
+ | |||
+ | Therefore, <math>2BF = 2 + \sqrt{3} - 1</math>, and we get <math>BF = \frac{1}{2} + \frac{\sqrt{3}}{2}</math> | ||
+ | |||
+ | The radius of the circle is <math>AD</math>, which is <math>BF + 1 = \frac{3}{2} + \frac{\sqrt{3}}{2}</math> | ||
+ | |||
+ | Using decimal approximations, <math>r \approx 1.5 + \frac{1.73^+}{2} \approx 2.37</math>, and the answer is <math>\boxed{D}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | From the diagram above, it is more direct to note that BC = CF + BF = r - <math>\sqrt{3}</math> + r - 1 = 2 | ||
+ | |||
+ | == Solution 3 == | ||
+ | The total area of both kites is <math>BC \cdot OF= 2r</math>. Thus, <math>r^2 = \frac{\sqrt{3}}{2} + 2r</math> | ||
== See also == | == See also == | ||
{{AHSME box|year=1997|num-b=18|num-a=20}} | {{AHSME box|year=1997|num-b=18|num-a=20}} | ||
+ | {{MAA Notice}} |
Latest revision as of 19:28, 10 October 2024
Problem
A circle with center is tangent to the coordinate axes and to the hypotenuse of the -- triangle as shown, where . To the nearest hundredth, what is the radius of the circle?
Solution
Draw radii and to the axes, and label the point of tangency to triangle point . Let the radius of the circle be . Square has side length .
Because and are tangents from a common point , .
Similarly, , and we can write:
Equating the radii lengths, we have
This means
by the 30-60-90 triangle.
Therefore, , and we get
The radius of the circle is , which is
Using decimal approximations, , and the answer is .
Solution 2
From the diagram above, it is more direct to note that BC = CF + BF = r - + r - 1 = 2
Solution 3
The total area of both kites is . Thus,
See also
1997 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.