Difference between revisions of "Euler's number"

m (Where <math>e</math> comes from)
m (Fixed LaTeX on the Taylor series sum and ln integral.)
 
(21 intermediate revisions by 11 users not shown)
Line 1: Line 1:
The [[mathematical constant]] ''e'' is defined as the following [[limit]]: <math>e=\lim_{n\rightarrow \infty}{(1+\frac1n)}^n</math>.
+
'''Euler's number''' is a [[constant]] that appears in a variety of mathematical contexts. It is defined as the positive real number <math>e</math> such that <math>\ln e=1</math>, where <math>\ln x=\int_1^x \frac{1}{t} \, dt</math>. It has been shown to be both [[irrational]] and [[transcendental number|transcendental]].
In [[calculus]], the fact that <math>e^x = \sum{\frac{x^n}{n!}}</math> is used often, based on the above definition and the [[Binomial Theorem]].
 
  
 +
An approximation for Euler's number is <math>e\approx 2.7182818284590452...</math>
  
 +
==Euler's Number as the Base of Logarithms and Exponential Functions==
  
== Where <math>e</math> comes from ==
+
The <math>\ln</math> (natural logarithm) function is equivalent to a [[logarithm]] with base <math>e</math>. In addition, the function <math>\exp(x)</math>, defined as the function such that <math>\frac{d}{dx} \exp(x)=\exp(x)</math> and <math>\exp(0)=1</math> is equal to <math>e^x</math>.
 +
 
 +
== Euler's Number and Calculus ==
 +
Euler's number is defined as the following [[limit]]: <math>e=\lim_{n\rightarrow \infty}{\left(1+\frac 1n\right)}^n</math>.
 +
In [[calculus]], the fact that <math>e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}</math> is used often, based on the above definition and the [[Binomial Theorem]].
 +
 
 +
=== Derivation of Euler's Number ===
  
 
Suppose <math>b</math> is a positive real number, and <math>f(x) = b^x</math> for all real numbers <math>x</math>.  Let's try to figure out what <math>f'(x)</math> is.
 
Suppose <math>b</math> is a positive real number, and <math>f(x) = b^x</math> for all real numbers <math>x</math>.  Let's try to figure out what <math>f'(x)</math> is.
Line 12: Line 19:
  
  
Now look what has happened.  Something special has almost happened.  We found the derivative of <math>b^x</math>, and what we got was ''almost'' <math>b^x</math>.  In other words, the derivative of this function is ''almost'' the same function that we started with.  However, there is that annoying and kind of messy limit on the right that is messing things up.
+
Something special has almost happened.  We found the derivative of <math>b^x</math>, and what we got was ''almost'' <math>b^x</math>.  In other words, the derivative of this function is ''almost'' the same function that we started with.  However, there is that annoying and kind of messy limit on the right that is messing things up.
 +
 
 +
 
 +
It seems like it would be useful to have a function whose derivative is equal to itself.  (In fact, it turns out that such a function is very useful indeed, for example, in finding solutions to certain [[differential equation]]s.)  So, let's ask this question:  Is it possible to cleverly pick a special value of <math>b</math> in order to make that annoying limit on the right turn out to be equal to <math>1</math>?  If this were possible, then for that special value of <math>b</math>, it would in fact be true that the derivative of <math>b^x</math> is just <math>b^x</math>, exactly the same function we started with.
  
  
It seems like it would be at least cool, if not downright useful, to have a function whose derivative is equal to itself.  (In fact, it turns out that such a function is very useful indeed, for example in finding solutions to certain [[differential equation]]s.)  So let's ask this question:  Is it possible to cleverly pick a special value of <math>b</math> in order to make that annoying limit on the right turn out to be equal to <math>1</math>? If this were possible, then for that special value of <math>b</math>, it would in fact be true that the derivative of <math>b^x</math> is just <math>b^x</math>, exactly the same function we started with.
+
Well, the fact is that there is a special value of <math>b</math> which accomplishes this goal.  It is approximately <math>2.718</math>, and it is called <math>e</math>. ("<math>e</math>" stands for ''exponential'' and not ''[[Leonhard Euler|Euler]]'', despite the fact that Leonhard Euler was one of the first mathematicians to use it and the one to name it.  <math>e</math> is sometimes (perhaps incorrectly) called "Euler's number." However, [[Napier]] came close to discovering <math>e</math> (or, rather, <math>1/e</math>) before Euler did.)
  
  
Well, the fact is that there is a special value of <math>b</math> which accomplishes this goal. It is approximately <math>2.718</math>, and it is called <math>e</math>.  ("<math>e</math>" stands for exponential and not [[Euler]], despite the fact that Euler was one of the first mathematicians to use it and the one to name it.  <math>e</math> is sometimes (perhaps incorrectly) called "Euler's number.")
+
So, how do we choose <math>b</math> so that <math>\lim_{\Delta x \to 0} \frac{b^{\Delta x} - 1}{\Delta x} = 1</math>?  Could we pick <math>b</math> in some clever way to make this expression simplify? As a first rough idea, imagine what would happen to the expression <math>\frac{b^{\Delta x}-1}{\Delta x}</math> if <math>b</math> were equal to <math>(1+\Delta x)^{\frac{1}{\Delta x} }</math>.  Everything cancels out nicely, and we are left with just <math>1</math>.  This suggests that we should select <math>b</math> to be <math>\lim_{\Delta x \to 0} (1+\Delta x)^{\frac{1}{\Delta x}}</math>Here we have our definition of <math>e</math>.  This limit is approximately <math>2.718</math>.
  
  
So, how do we choose <math>b</math> so that <math>\lim_{\Delta x \to 0} \frac{b^{\Delta x} - 1}{\Delta x} = 1</math>?  Could we pick <math>b</math> in some clever way to make this expression simplify?  As a first rough idea, imagine what would happen to the expression <math>\frac{b^{\Delta x}-1}{\Delta x}</math> if <math>b</math> were equal to <math>(1+\Delta x)^{\frac{1}{\Delta x} }</math>.  Everything cancels out nicely, and we are left with just <math>1</math>.  This suggests that we should select <math>b</math> to be <math>\lim_{\Delta x \to 0} (1+\Delta x)^{\frac{1}{\Delta x}}</math>.  So here we have our definition of <math>e</math>.  This limit is approximately <math>2.718</math>.
+
To make this rigorous, it should be possible to prove that this limit actually exists.  Once we define <math>e</math> to be this limit, it should be possible to prove that <math>\lim_{\Delta x \to 0} \frac{e^{\Delta x}-1}{\Delta x} = 1</math>.
  
  
To make this rigorous, it should be possible to prove that this limit actually existsAnd once we define <math>e</math> to be this limit, it should be possible to prove that <math>\lim_{\Delta x \to 0} \frac{e^{\Delta x}-1}{\Delta x} = 1</math>.
+
(This definition of <math>e</math> is equivalent to the one given at the beginning of this articleJust let <math>M = \frac{1}{\Delta x}</math>.  Then <math>\lim_{\Delta x \to 0} (1+\Delta x)^{\frac{1}{\Delta x}} = \lim_{M \to \infty} \left(1 + \frac{1}{M}\right)^M</math>.)
  
 +
== See also ==
 +
* [[Exponents]]
 +
* [[Algebra]]
 +
* [[Logarithms]]
 +
* [[Calculus]]
 +
* [[Exponential form]]
  
(This definition of <math>e</math> is equivalent to the one given at the beginning of this article.  Just let <math>M = \frac{1}{\Delta x}</math>.  Then <math>\lim_{\Delta x \to 0} (1+\Delta x)^{\frac{1}{\Delta x}} = lim_{M \to \infty} \left(1 + \frac{1}{M}\right)^M</math>.)
+
[[Category:Constants]]

Latest revision as of 20:09, 13 March 2022

Euler's number is a constant that appears in a variety of mathematical contexts. It is defined as the positive real number $e$ such that $\ln e=1$, where $\ln x=\int_1^x \frac{1}{t} \, dt$. It has been shown to be both irrational and transcendental.

An approximation for Euler's number is $e\approx 2.7182818284590452...$

Euler's Number as the Base of Logarithms and Exponential Functions

The $\ln$ (natural logarithm) function is equivalent to a logarithm with base $e$. In addition, the function $\exp(x)$, defined as the function such that $\frac{d}{dx} \exp(x)=\exp(x)$ and $\exp(0)=1$ is equal to $e^x$.

Euler's Number and Calculus

Euler's number is defined as the following limit: $e=\lim_{n\rightarrow \infty}{\left(1+\frac 1n\right)}^n$. In calculus, the fact that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ is used often, based on the above definition and the Binomial Theorem.

Derivation of Euler's Number

Suppose $b$ is a positive real number, and $f(x) = b^x$ for all real numbers $x$. Let's try to figure out what $f'(x)$ is.


$f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{b^{x+\Delta x} - b^x}{\Delta x} = \lim_{\Delta x \to 0} b^x \left( \frac {b^{\Delta x} - 1}{\Delta x}\right) = b^x \left(\lim_{\Delta x \to 0} \frac{b^{\Delta x} - 1}{\Delta x}\right)$.


Something special has almost happened. We found the derivative of $b^x$, and what we got was almost $b^x$. In other words, the derivative of this function is almost the same function that we started with. However, there is that annoying and kind of messy limit on the right that is messing things up.


It seems like it would be useful to have a function whose derivative is equal to itself. (In fact, it turns out that such a function is very useful indeed, for example, in finding solutions to certain differential equations.) So, let's ask this question: Is it possible to cleverly pick a special value of $b$ in order to make that annoying limit on the right turn out to be equal to $1$? If this were possible, then for that special value of $b$, it would in fact be true that the derivative of $b^x$ is just $b^x$, exactly the same function we started with.


Well, the fact is that there is a special value of $b$ which accomplishes this goal. It is approximately $2.718$, and it is called $e$. ("$e$" stands for exponential and not Euler, despite the fact that Leonhard Euler was one of the first mathematicians to use it and the one to name it. $e$ is sometimes (perhaps incorrectly) called "Euler's number." However, Napier came close to discovering $e$ (or, rather, $1/e$) before Euler did.)


So, how do we choose $b$ so that $\lim_{\Delta x \to 0} \frac{b^{\Delta x} - 1}{\Delta x} = 1$? Could we pick $b$ in some clever way to make this expression simplify? As a first rough idea, imagine what would happen to the expression $\frac{b^{\Delta x}-1}{\Delta x}$ if $b$ were equal to $(1+\Delta x)^{\frac{1}{\Delta x} }$. Everything cancels out nicely, and we are left with just $1$. This suggests that we should select $b$ to be $\lim_{\Delta x \to 0} (1+\Delta x)^{\frac{1}{\Delta x}}$. Here we have our definition of $e$. This limit is approximately $2.718$.


To make this rigorous, it should be possible to prove that this limit actually exists. Once we define $e$ to be this limit, it should be possible to prove that $\lim_{\Delta x \to 0} \frac{e^{\Delta x}-1}{\Delta x} = 1$.


(This definition of $e$ is equivalent to the one given at the beginning of this article. Just let $M = \frac{1}{\Delta x}$. Then $\lim_{\Delta x \to 0} (1+\Delta x)^{\frac{1}{\Delta x}} = \lim_{M \to \infty} \left(1 + \frac{1}{M}\right)^M$.)

See also