|
|
(6 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect [[2010 AMC 12B Problems/Problem 10]] |
− | The average of the numbers <math>1, 2, 3,\cdots, 98, 99,</math> and <math>x</math> is <math>100x</math>. What is <math>x</math>?
| |
− | | |
− | <math>\textbf{(A)}\ \dfrac{49}{101} \qquad \textbf{(B)}\ \dfrac{50}{101} \qquad \textbf{(C)}\ \dfrac{1}{2} \qquad \textbf{(D)}\ \dfrac{51}{101} \qquad \textbf{(E)}\ \dfrac{50}{99}</math>
| |
− | | |
− | ==Solution==
| |
− | We must find the average of the numbers from <math> 1 </math> to <math> 99 </math> and <math> x </math> in terms of <math> x </math>. The sum of all these terms is <math> \frac{99(100)}{2}+x=99(50)+x </math>. We must divide this by the total number of terms, which is <math> 100 </math>. We get: <math> \frac{99(50)+x}{100} </math>. This is equal to <math> 100x </math>, as stated in the problem. We have: <math> \frac{99(50)+x}{100}=100x </math>. We can now cross multiply. This gives:
| |
− | | |
− | <cmath>\begin{align*}
| |
− | 100(100x)&=99(50)+x\\
| |
− | 10000x&=99(50)+x\\
| |
− | 9999x&=99(50)\\
| |
− | 101x&=50\\
| |
− | x&=\boxed{\textbf{(B)}\ \frac{50}{101}}</cmath>
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2010|ab=B|num-b=13|num-a=15}}
| |
− | fuck all
| |