Difference between revisions of "2011 AMC 10A Problems/Problem 4"

m (Solution)
(Solution 3)
 
(26 intermediate revisions by 11 users not shown)
Line 1: Line 1:
 +
==Problem==
 
Let X and Y be the following sums of arithmetic sequences:  
 
Let X and Y be the following sums of arithmetic sequences:  
  
<cmath> \begin{eqnarray*}X &=& 10+12+14+\cdots+100,\\ Y &=& 12+14+16+\cdots+102.\end[eqnarray*} </cmath>
+
<cmath> \begin{eqnarray*}X &=& 10+12+14+\cdots+100,\\ Y &=& 12+14+16+\cdots+102.\end{eqnarray*} </cmath>
  
What is the value of Y - X?  
+
What is the value of <math>Y - X? </math>
  
 
<math> \textbf{(A)}\ 92\qquad\textbf{(B)}\ 98\qquad\textbf{(C)}\ 100\qquad\textbf{(D)}\ 102\qquad\textbf{(E)}\ 112 </math>
 
<math> \textbf{(A)}\ 92\qquad\textbf{(B)}\ 98\qquad\textbf{(C)}\ 100\qquad\textbf{(D)}\ 102\qquad\textbf{(E)}\ 112 </math>
  
==Solution==
+
==Solution 1==
 
We see that both sequences have equal numbers of terms, so reformat the sequence to look like:  
 
We see that both sequences have equal numbers of terms, so reformat the sequence to look like:  
  
Line 14: Line 15:
 
X = 10 \ + \ &12 +  14 + \cdots + 100\\
 
X = 10 \ + \ &12 +  14 + \cdots + 100\\
 
\end{align*}</cmath>
 
\end{align*}</cmath>
From here it is obvious that Y - X = 102 - 10 = <math>\boxed{92 \ \mathbf{(A)}}</math>.
+
From here it is obvious that <math>Y - X = 102 - 10 = \boxed{92 \ \mathbf{(A)}}</math>.
  
 +
===Note===
 +
Another way to see this is to let the sum <math>12+14+16+...+100=x.</math> So, the sequences become
 +
<cmath>\begin{align*}
 +
X = 10+x \\
 +
Y= x+102 \\
 +
\end{align*}</cmath>
 +
 +
Like before, the difference between the two sequences is <math>Y-X=102-12=92.</math>
 +
 +
==Solution 2==
 +
 +
We see that every number in Y's sequence is two more than every corresponding number in X's sequence. Since there are 46 numbers in each sequence, the difference must be
 +
<math>46\cdot 2=\boxed{92}</math>
 +
 +
==Solution 3==
 +
 +
<cmath>\begin{align*}
 +
X&=10+12+14+\cdots +100 \\
 +
Y&=X-10+102 = X+92 \\
 +
Y-X &= (X+92)-X \\
 +
    &= \boxed{92} \quad \quad \textbf{(A)}\\
 +
\end{align*} </cmath>
 +
 +
 +
- <math>\text{herobrine-india}</math>
 +
 +
==Solution 4==
  
OR
+
In an actual contest, this would probably take too much time but is nevertheless a solution.
 +
The general formula for computing sums of any arithmetic sequence where <math>x</math> is the number of terms, <math>f</math> is the first term and <math>l</math> is the last term is <math>\frac{(f+l)x}{2}</math>. If one uses that formula for both sequences, they will get <math>2530</math> as the sum for <math>X</math> and <math>2622</math> as the sum for <math>Y</math>.
 +
Subtracting <math>X</math> from <math>Y</math>, one will get the answer <math>\boxed{92 \text{\textbf{ (A)}}}</math>.
 +
- danfan
  
 +
==Video Solution==
 +
https://youtu.be/L6utIF9FzPQ
  
We see that every number in Y's sequence is two more than every corresponding number in X's sequence. Since there are 46 numbers in each sequence, the difference must be:
+
~savannahsolver
<math>46*2=\boxed{92}</math>
 
  
 
== See Also ==
 
== See Also ==
 
{{AMC10 box|year=2011|ab=A|num-b=3|num-a=5}}
 
{{AMC10 box|year=2011|ab=A|num-b=3|num-a=5}}
 +
{{MAA Notice}}

Latest revision as of 10:02, 17 June 2024

Problem

Let X and Y be the following sums of arithmetic sequences:

\begin{eqnarray*}X &=& 10+12+14+\cdots+100,\\ Y &=& 12+14+16+\cdots+102.\end{eqnarray*}

What is the value of $Y - X?$

$\textbf{(A)}\ 92\qquad\textbf{(B)}\ 98\qquad\textbf{(C)}\ 100\qquad\textbf{(D)}\ 102\qquad\textbf{(E)}\ 112$

Solution 1

We see that both sequences have equal numbers of terms, so reformat the sequence to look like:

\begin{align*} Y = \ &12 + 14 + \cdots + 100 + 102\\ X = 10 \ + \ &12 +  14 + \cdots + 100\\ \end{align*} From here it is obvious that $Y - X = 102 - 10 = \boxed{92 \ \mathbf{(A)}}$.

Note

Another way to see this is to let the sum $12+14+16+...+100=x.$ So, the sequences become \begin{align*} X = 10+x \\ Y= x+102 \\ \end{align*}

Like before, the difference between the two sequences is $Y-X=102-12=92.$

Solution 2

We see that every number in Y's sequence is two more than every corresponding number in X's sequence. Since there are 46 numbers in each sequence, the difference must be $46\cdot 2=\boxed{92}$

Solution 3

\begin{align*} X&=10+12+14+\cdots +100 \\ Y&=X-10+102 = X+92 \\  Y-X &= (X+92)-X \\      &= \boxed{92} \quad \quad \textbf{(A)}\\ \end{align*}


- $\text{herobrine-india}$

Solution 4

In an actual contest, this would probably take too much time but is nevertheless a solution. The general formula for computing sums of any arithmetic sequence where $x$ is the number of terms, $f$ is the first term and $l$ is the last term is $\frac{(f+l)x}{2}$. If one uses that formula for both sequences, they will get $2530$ as the sum for $X$ and $2622$ as the sum for $Y$. Subtracting $X$ from $Y$, one will get the answer $\boxed{92 \text{\textbf{ (A)}}}$. - danfan

Video Solution

https://youtu.be/L6utIF9FzPQ

~savannahsolver

See Also

2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png