Difference between revisions of "1989 AHSME Problems/Problem 6"

 
(13 intermediate revisions by 5 users not shown)
Line 1: Line 1:
If <math>a,b>0</math> and the triangle in the first quadrant bounded by the co-ordinate axes and the graph of <math>ax+by=6</math> has area 6, then <math>ab=</math>
+
== Problem ==
 +
 
 +
If <math>a,b>0</math> and the triangle in the first quadrant bounded by the coordinate axes and the graph of <math>ax+by=6</math> has area 6, then <math>ab=</math>
  
 
<math> \mathrm{(A) \ 3 } \qquad \mathrm{(B) \ 6 } \qquad \mathrm{(C) \ 12 } \qquad \mathrm{(D) \ 108 } \qquad \mathrm{(E) \ 432 }  </math>
 
<math> \mathrm{(A) \ 3 } \qquad \mathrm{(B) \ 6 } \qquad \mathrm{(C) \ 12 } \qquad \mathrm{(D) \ 108 } \qquad \mathrm{(E) \ 432 }  </math>
  
Setting <math>y=0</math> we have that the <math>x-</math>intercept of the line is <math>x=6/a</math>. Similarly setting <math>x=0</math> we find the <math>y-</math>intercept to be <math>y=6/b</math>. Then <math>6=(1/2)(6/a)(6/b)</math> so that <math>ab=3</math>. Hence the answer is <math>A</math>.
+
==Solution==
 +
Setting <math>y=0</math> we have that the <math>x-</math>intercept of the line is <math>x= \frac{6}{a} </math>. Similarly setting <math>x=0</math> we find the <math>y-</math>intercept to be <math>y= \frac{6}{b} </math>. Then <math> \frac{18}{ab}=\frac{1}{2}\cdot\frac{6}{a}\cdot\frac{6}{b}</math> so that <math> \frac{18}{ab} = 6</math>, simplifying we would get <math>ab=3</math>. Hence the answer is <math>\fbox{A}</math>.
 +
 
 +
-<math>\LaTeX</math> by Kevinliu08
 +
 
 +
== See also ==
 +
{{AHSME box|year=1989|num-b=5|num-a=7}} 
 +
 
 +
[[Category: Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 20:12, 8 September 2023

Problem

If $a,b>0$ and the triangle in the first quadrant bounded by the coordinate axes and the graph of $ax+by=6$ has area 6, then $ab=$

$\mathrm{(A) \ 3 } \qquad \mathrm{(B) \ 6 } \qquad \mathrm{(C) \ 12 } \qquad \mathrm{(D) \ 108 } \qquad \mathrm{(E) \ 432 }$

Solution

Setting $y=0$ we have that the $x-$intercept of the line is $x= \frac{6}{a}$. Similarly setting $x=0$ we find the $y-$intercept to be $y= \frac{6}{b}$. Then $\frac{18}{ab}=\frac{1}{2}\cdot\frac{6}{a}\cdot\frac{6}{b}$ so that $\frac{18}{ab} = 6$, simplifying we would get $ab=3$. Hence the answer is $\fbox{A}$.

-$\LaTeX$ by Kevinliu08

See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png