Difference between revisions of "2010 IMO Problems"

m
 
(One intermediate revision by one other user not shown)
Line 46: Line 46:
 
Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes <math>B_1</math>, <math>B_2</math>, <math>B_3</math>, <math>B_4</math>, <math>B_5</math> become empty, while box <math>B_6</math> contains exactly <math>2010^{2010^{2010}}</math> coins.
 
Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes <math>B_1</math>, <math>B_2</math>, <math>B_3</math>, <math>B_4</math>, <math>B_5</math> become empty, while box <math>B_6</math> contains exactly <math>2010^{2010^{2010}}</math> coins.
  
''Author: Unknown currently''
+
''Author: Hans Zantema, Netherlands''
  
 
[[2010 IMO Problems/Problem 5 | Solution]]
 
[[2010 IMO Problems/Problem 5 | Solution]]
Line 62: Line 62:
 
* [[2010 IMO]]
 
* [[2010 IMO]]
 
* [http://www.artofproblemsolving.com/Forum/resources.php?c=1&cid=16&year=2010&sid=d01bf5fde3957e46434bfbcddbb9a0cb 2010 IMO Problems on the Resources page]
 
* [http://www.artofproblemsolving.com/Forum/resources.php?c=1&cid=16&year=2010&sid=d01bf5fde3957e46434bfbcddbb9a0cb 2010 IMO Problems on the Resources page]
 +
 +
{{IMO box|year=2010|before=[[2009 IMO Problems]]|after=[[2012 IMO Problems]]}}

Latest revision as of 08:22, 10 September 2020

Problems of the 51st IMO 2010 in Astana, Kazakhstan.

Day 1

Problem 1.

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all $x,y\in\mathbb{R}$ the following equality holds

\[f(\left\lfloor x\right\rfloor y)=f(x)\left\lfloor f(y)\right\rfloor\]

where $\left\lfloor a\right\rfloor$ is greatest integer not greater than $a.$

Author: Pierre Bornsztein, France

Solution

Problem 2.

Given a triangle $ABC$, with $I$ as its incenter and $\Gamma$ as its circumcircle, $AI$ intersects $\Gamma$ again at $D$. Let $E$ be a point on arc $BDC$, and $F$ a point on the segment $BC$, such that $\angle BAF=\angle CAE< \frac12\angle BAC$. If $G$ is the midpoint of $IF$, prove that the intersection of lines $EI$ and $DG$ lies on $\Gamma$.

Authors: Tai Wai Ming and Wang Chongli, Hong Kong

Solution

Problem 3.

Find all functions $g:\mathbb{N}\rightarrow\mathbb{N}$ such that $\left(g(m)+n\right)\left(g(n)+m\right)$ is a perfect square for all $m,n\in\mathbb{N}.$

Author: Gabriel Carroll, USA

Solution

Day 2

Problem 4.

Let $P$ be a point interior to triangle $ABC$ (with $CA \neq CB$). The lines $AP$, $BP$ and $CP$ meet again its circumcircle $\Gamma$ at $K$, $L$, respectively $M$. The tangent line at $C$ to $\Gamma$ meets the line $AB$ at $S$. Show that from $SC = SP$ follows $MK = ML$.

Author: Unknown currently

Solution

Problem 5.

Each of the six boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$, $B_6$ initially contains one coin. The following operations are allowed

Type 1) Choose a non-empty box $B_j$, $1\leq j \leq 5$, remove one coin from $B_j$ and add two coins to $B_{j+1}$;

Type 2) Choose a non-empty box $B_k$, $1\leq k \leq 4$, remove one coin from $B_k$ and swap the contents (maybe empty) of the boxes $B_{k+1}$ and $B_{k+2}$.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$ become empty, while box $B_6$ contains exactly $2010^{2010^{2010}}$ coins.

Author: Hans Zantema, Netherlands

Solution

Problem 6.

Let $a_1, a_2, a_3, \ldots$ be a sequence of positive real numbers, and $s$ be a positive integer, such that \[a_n = \max \{ a_k + a_{n-k} \mid 1 \leq k \leq n-1 \} \ \textrm{ for all } \ n > s.\] Prove there exist positive integers $\ell \leq s$ and $N$, such that \[a_n = a_{\ell} + a_{n - \ell} \ \textrm{ for all } \ n \geq N.\]

Author: Morteza Saghafiyan, Iran

Solution

Resources

2010 IMO (Problems) • Resources
Preceded by
2009 IMO Problems
1 2 3 4 5 6 Followed by
2012 IMO Problems
All IMO Problems and Solutions