Difference between revisions of "2013 AMC 12A Problems/Problem 11"

(See also)
 
(One intermediate revision by one other user not shown)
Line 44: Line 44:
  
 
Therefore, <math>x+y</math> = <math>\frac{21}{13}</math>, which is <math>C</math>
 
Therefore, <math>x+y</math> = <math>\frac{21}{13}</math>, which is <math>C</math>
 +
 +
==Video Solution==
 +
https://www.youtube.com/watch?v=XQpQaomC2tA
 +
 +
~sugar_rush
  
 
== See also ==
 
== See also ==
Line 49: Line 54:
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 19:12, 24 November 2020

Problem

Triangle $ABC$ is equilateral with $AB=1$. Points $E$ and $G$ are on $\overline{AC}$ and points $D$ and $F$ are on $\overline{AB}$ such that both $\overline{DE}$ and $\overline{FG}$ are parallel to $\overline{BC}$. Furthermore, triangle $ADE$ and trapezoids $DFGE$ and $FBCG$ all have the same perimeter. What is $DE+FG$?

[asy] size(180); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); real s=1/2,m=5/6,l=1; pair A=origin,B=(l,0),C=rotate(60)*l,D=(s,0),E=rotate(60)*s,F=m,G=rotate(60)*m; draw(A--B--C--cycle^^D--E^^F--G); dot(A^^B^^C^^D^^E^^F^^G); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$E$",E,NW); label("$F$",F,S); label("$G$",G,NW); [/asy]

$\textbf{(A) }1\qquad \textbf{(B) }\dfrac{3}{2}\qquad \textbf{(C) }\dfrac{21}{13}\qquad \textbf{(D) }\dfrac{13}{8}\qquad \textbf{(E) }\dfrac{5}{3}\qquad$

Solution

Let $AD = x$, and $AG = y$. We want to find $DE + FG$, which is nothing but $x+y$.

Based on the fact that $ADE$, $DEFG$, and $BCFG$ have the same perimeters, we can say the following:

$3x = x + 2(y-x) + y = y + 2(1-y) + 1$

Simplifying, we can find that

$3x = 3y-x = 3-y$

Since $3-y = 3x$, $y = 3-3x$.

After substitution, we find that $9-10x = 3x$, and $x$ = $\frac{9}{13}$.

Again substituting, we find $y$ = $\frac{12}{13}$.

Therefore, $x+y$ = $\frac{21}{13}$, which is $C$

Video Solution

https://www.youtube.com/watch?v=XQpQaomC2tA

~sugar_rush

See also

2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png