Difference between revisions of "2008 AMC 12B Problems/Problem 15"
Hashtagmath (talk | contribs) |
|||
(4 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
<math> \textbf{(A)} \; \frac{1}{4} \qquad \textbf{(B)} \; \frac{\sqrt{2}}{4} \qquad \textbf{(C)} \; 1 \qquad \textbf{(D)} \; \sqrt{3} \qquad \textbf{(E)} \; 2 \sqrt{3}</math> | <math> \textbf{(A)} \; \frac{1}{4} \qquad \textbf{(B)} \; \frac{\sqrt{2}}{4} \qquad \textbf{(C)} \; 1 \qquad \textbf{(D)} \; \sqrt{3} \qquad \textbf{(E)} \; 2 \sqrt{3}</math> | ||
− | ==Solution== | + | ==Solution 1== |
<asy> | <asy> | ||
real a = 1/2, b = sqrt(3)/2; | real a = 1/2, b = sqrt(3)/2; | ||
Line 15: | Line 15: | ||
filldraw((-b,-1+a)--(0,0)--(-1+a,-b)--cycle,gray(0.9)); | filldraw((-b,-1+a)--(0,0)--(-1+a,-b)--cycle,gray(0.9)); | ||
</asy> | </asy> | ||
− | |||
+ | The equilateral triangles form trapezoids with side lengths <math> 1, 1, 1, 2</math> (half a unit hexagon) on each face of the unit square. The four triangles "in between" these trapezoids are isosceles triangles with two side lengths <math> 1</math> and an angle of <math> 30^{\circ}</math> in between them, so the total area of these triangles (which is the area of <math> S - R</math>) is, <math> 4 \left( \frac {1}{2} \sin 30^{\circ} \right) = 1</math> which makes the answer <math> \boxed{C}</math>. | ||
+ | ==Solution 2== | ||
+ | <asy> | ||
+ | real a = 1/2, b = sqrt(3)/2; | ||
+ | draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); | ||
+ | draw((a+b+a,a+b+a)--(a+b+a,-b)--(-b,-b)--(-b,a+a+b)--cycle,dashed); | ||
+ | draw((0,0)--(a,-b)--(1,0)--(1+b,a)--(1,1)--(a,1+b)--(0,1)--(-b,a)--(0,0)); | ||
+ | draw((0,0)--(-1+a,-b)--(1+a,-b)--(1,0)--(1+b,-1+a)--(1+b,1+a)--(1,1)--(1+a,1+b)--(-1+a,1+b)--(0,1)--(-b,1+a)--(-b,-1+a)--(0,0)); | ||
+ | filldraw((1+a,-b)--(1,0)--(1+b,-1+a)--cycle,gray(0.9)); | ||
+ | filldraw((1+b,1+a)--(1,1)--(1+a,1+b)--cycle,gray(0.9)); | ||
+ | filldraw((-1+a,1+b)--(0,1)--(-b,1+a)--cycle,gray(0.9)); | ||
+ | filldraw((-b,-1+a)--(0,0)--(-1+a,-b)--cycle,gray(0.9)); | ||
+ | </asy> | ||
+ | |||
+ | The area of the largest square is <math>(1+\sqrt{3})^2=4+2\sqrt{3}</math>. The area of region <math>R</math> is <math>1+12\frac{1}{2}\frac{\sqrt{3}}{2}=1+3\sqrt{3}</math>. The total area of four small 45-45-90 triangles at corner is <math>4*\frac{1}{2}(\frac{\sqrt{3}+1-2}{2})^2=2-\sqrt{3}</math>. <math>S=4+2\sqrt{3}-(2-\sqrt{3})=2+3\sqrt{3}</math>, <math>S-R=1</math>. | ||
+ | |||
+ | |||
+ | ~Bran Qin | ||
==See Also== | ==See Also== | ||
[http://www.artofproblemsolving.com/Forum/viewtopic.php?p=1051031#p1051031 Region with Squares and Triangles] | [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=1051031#p1051031 Region with Squares and Triangles] |
Latest revision as of 21:58, 7 October 2021
Contents
Problem
On each side of a unit square, an equilateral triangle of side length 1 is constructed. On each new side of each equilateral triangle, another equilateral triangle of side length 1 is constructed. The interiors of the square and the 12 triangles have no points in common. Let be the region formed by the union of the square and all the triangles, and be the smallest convex polygon that contains . What is the area of the region that is inside but outside ?
Solution 1
The equilateral triangles form trapezoids with side lengths (half a unit hexagon) on each face of the unit square. The four triangles "in between" these trapezoids are isosceles triangles with two side lengths and an angle of in between them, so the total area of these triangles (which is the area of ) is, which makes the answer .
Solution 2
The area of the largest square is . The area of region is . The total area of four small 45-45-90 triangles at corner is . , .
~Bran Qin
See Also
Region with Squares and Triangles
2008 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.