Difference between revisions of "1991 AHSME Problems/Problem 14"

(Problem)
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
== Problem ==
 +
 
If <math>x</math> is the cube of a positive integer and <math>d</math> is the number of positive integers that are divisors of <math>x</math>, then <math>d</math> could be
 
If <math>x</math> is the cube of a positive integer and <math>d</math> is the number of positive integers that are divisors of <math>x</math>, then <math>d</math> could be
  
(A) <math>200</math> (B) <math>201</math> (C) <math>202</math> (D) <math>203</math> (E) <math>204</math>
+
<math>\text{(A) } 200\quad\text{(B) } 201\quad\text{(C) } 202\quad\text{(D) } 203\quad\text{(E) } 204</math>
 +
 
 +
== Solution 1: Number Sense==
 +
Solution by e_power_pi_times_i
 +
 
 +
 
 +
Notice that if <math>x</math> is expressed in the form <math>a^b</math>, then the number of positive divisors of <math>x^3</math> is <math>3b+1</math>. Checking through all the answer choices, the only one that is in the form <math>3b+1</math> is <math>\boxed{\textbf{(C) } 202}</math>.
 +
 
 +
==Solution 2: Answer Choices==
 +
Solution by e_power_pi_times_i
 +
 
 +
 
 +
Since the divisors are from <math>x^3</math>, then the answer must be something in (mod <math>3</math>). Since <math>200</math> and <math>203</math> are the same (mod <math>3</math>), as well as <math>201</math> and <math>204</math>, <math>\boxed{\textbf{(C) } 202}</math> is the only answer left.
 +
 
 +
== See also ==
 +
{{AHSME box|year=1991|num-b=13|num-a=15}} 
 +
 
 +
[[Category: Introductory Number Theory Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 15:49, 14 March 2023

Problem

If $x$ is the cube of a positive integer and $d$ is the number of positive integers that are divisors of $x$, then $d$ could be

$\text{(A) } 200\quad\text{(B) } 201\quad\text{(C) } 202\quad\text{(D) } 203\quad\text{(E) } 204$

Solution 1: Number Sense

Solution by e_power_pi_times_i


Notice that if $x$ is expressed in the form $a^b$, then the number of positive divisors of $x^3$ is $3b+1$. Checking through all the answer choices, the only one that is in the form $3b+1$ is $\boxed{\textbf{(C) } 202}$.

Solution 2: Answer Choices

Solution by e_power_pi_times_i


Since the divisors are from $x^3$, then the answer must be something in (mod $3$). Since $200$ and $203$ are the same (mod $3$), as well as $201$ and $204$, $\boxed{\textbf{(C) } 202}$ is the only answer left.

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png