Difference between revisions of "2008 AMC 10A Problems/Problem 3"

(Solution)
m (Solution 2)
 
(4 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
<math>\mathrm{(A)}\ 6\qquad\mathrm{(B)}\ 12\qquad\mathrm{(C)}\ 24\qquad\mathrm{(D)}\ 32\qquad\mathrm{(E)}\ 36</math>
 
<math>\mathrm{(A)}\ 6\qquad\mathrm{(B)}\ 12\qquad\mathrm{(C)}\ 24\qquad\mathrm{(D)}\ 32\qquad\mathrm{(E)}\ 36</math>
  
==Solution==
+
==Solution 1==
 
<math>\langle\langle\langle 6\rangle\rangle\rangle= \langle\langle 6\rangle\rangle = \langle 6\rangle=\ 6\quad\Longrightarrow\quad\mathrm{(A)}</math>
 
<math>\langle\langle\langle 6\rangle\rangle\rangle= \langle\langle 6\rangle\rangle = \langle 6\rangle=\ 6\quad\Longrightarrow\quad\mathrm{(A)}</math>
 +
==Solution 2==
 +
Since <math>6</math> is a perfect number, any such operation where <math>n=6</math> will yield <math>6</math> as the answer.
 +
 +
Note: A perfect number is defined as a number that equals the sum of its positive divisors excluding itself.
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=A|num-b=2|num-a=4}}
 
{{AMC10 box|year=2008|ab=A|num-b=2|num-a=4}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 14:12, 1 July 2021

Problem

For the positive integer $n$, let $\langle n\rangle$ denote the sum of all the positive divisors of $n$ with the exception of $n$ itself. For example, $\langle 4\rangle=1+2=3$ and $\langle 12 \rangle =1+2+3+4+6=16$. What is $\langle\langle\langle 6\rangle\rangle\rangle$?

$\mathrm{(A)}\ 6\qquad\mathrm{(B)}\ 12\qquad\mathrm{(C)}\ 24\qquad\mathrm{(D)}\ 32\qquad\mathrm{(E)}\ 36$

Solution 1

$\langle\langle\langle 6\rangle\rangle\rangle= \langle\langle 6\rangle\rangle = \langle 6\rangle=\ 6\quad\Longrightarrow\quad\mathrm{(A)}$

Solution 2

Since $6$ is a perfect number, any such operation where $n=6$ will yield $6$ as the answer.

Note: A perfect number is defined as a number that equals the sum of its positive divisors excluding itself.

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png