Difference between revisions of "2013 USAMO Problems/Problem 1"
(Added a second solution) |
m (→Problem: added period) |
||
(17 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | In triangle <math>ABC</math>, points <math>P,Q,R</math> lie on sides <math>BC,CA,AB</math> respectively. Let <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> denote the circumcircles of triangles <math>AQR</math>, <math>BRP</math>, <math>CPQ</math>, respectively. Given the fact that segment <math>AP</math> intersects <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> again at <math>X,Y,Z</math> respectively, prove that <math>YX/XZ=BP/PC</math> | + | In triangle <math>ABC</math>, points <math>P,Q,R</math> lie on sides <math>BC,CA,AB</math> respectively. Let <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> denote the circumcircles of triangles <math>AQR</math>, <math>BRP</math>, <math>CPQ</math>, respectively. Given the fact that segment <math>AP</math> intersects <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> again at <math>X,Y,Z</math> respectively, prove that <math>YX/XZ=BP/PC</math>. |
==Solution 1== | ==Solution 1== | ||
Line 81: | Line 81: | ||
In this solution, all lengths and angles are directed. | In this solution, all lengths and angles are directed. | ||
− | Firstly, it is easy to see by that <math>\omega_A, \omega_B, \omega_C</math> concur at a point <math>M</math>. Let <math>XM</math> meet <math>\omega_B, \omega_C</math> again at <math>D</math> and <math>E</math>, respectively. Then by Power of a Point, we have <cmath>XM \cdot XE = XZ \cdot XP \quad\text{and}\quad XM \cdot XD = XY \cdot XP</cmath> Thusly <cmath>\frac{XY}{XZ} = \frac{XD}{XE}</cmath> But we claim that <math>\triangle XDP \sim \triangle PBM</math>. Indeed, <cmath>\measuredangle XDP = \measuredangle MDP = \measuredangle MBP = - \measuredangle PBM</cmath> and <cmath>\measuredangle DXP = \measuredangle MXY = \measuredangle MXA = \measuredangle MRA = \measuredangle MRB = \measuredangle MPB = -\measuredangle BPM</cmath> | + | Firstly, it is easy to see by that <math>\omega_A, \omega_B, \omega_C</math> concur at a point <math>M</math> (the Miquel point). Let <math>XM</math> meet <math>\omega_B, \omega_C</math> again at <math>D</math> and <math>E</math>, respectively. Then by Power of a Point, we have <cmath>XM \cdot XE = XZ \cdot XP \quad\text{and}\quad XM \cdot XD = XY \cdot XP</cmath> Thusly <cmath>\frac{XY}{XZ} = \frac{XD}{XE}</cmath> But we claim that <math>\triangle XDP \sim \triangle PBM</math>. Indeed, <cmath>\measuredangle XDP = \measuredangle MDP = \measuredangle MBP = - \measuredangle PBM</cmath> and <cmath>\measuredangle DXP = \measuredangle MXY = \measuredangle MXA = \measuredangle MRA = 180^\circ - \measuredangle MRB = \measuredangle MPB = -\measuredangle BPM</cmath> |
Therefore, <math>\frac{XD}{XP} = \frac{PB}{PM}</math>. Analogously we find that <math>\frac{XE}{XP} = \frac{PC}{PM}</math> and we are done. | Therefore, <math>\frac{XD}{XP} = \frac{PB}{PM}</math>. Analogously we find that <math>\frac{XE}{XP} = \frac{PC}{PM}</math> and we are done. | ||
− | courtesy v_enhance | + | courtesy v_enhance, minor clarification by integralarefun |
---- | ---- | ||
+ | |||
==Solution 2== | ==Solution 2== | ||
Line 100: | Line 101: | ||
The proof is complete. | The proof is complete. | ||
+ | ==Solution 3== | ||
+ | Use directed angles modulo <math>\pi</math>. | ||
+ | |||
+ | Lemma. <math>\angle{XRY} \equiv \angle{XQZ}.</math> | ||
+ | |||
+ | Proof. <cmath>\angle{XRY} \equiv \angle{XRA} - \angle{YRA} \equiv \angle{XQA} + \angle{YRB} \equiv \angle{XQA} + \angle{CPY} = \angle{XQA} + \angle{AQZ} = \angle{XQZ}.</cmath> | ||
+ | |||
+ | Now, it follows that (now not using directed angles) | ||
+ | <cmath>\frac{XY}{YZ} = \frac{\frac{XY}{\sin \angle{XRY}}}{\frac{YZ}{\sin \angle{XQZ}}} = \frac{\frac{RY}{\sin \angle{RXY}}}{\frac{QZ}{\sin \angle{QXZ}}} = \frac{BP}{PC}</cmath> | ||
+ | using the facts that <math>ARY</math> and <math>APB</math>, <math>AQZ</math> and <math>APC</math> are similar triangles, and that <math>\frac{RA}{\sin \angle{RXA}} = \frac{QA}{\sin \angle{QXA}}</math> equals twice the circumradius of the circumcircle of <math>AQR</math>. | ||
+ | |||
+ | ==Solution 4== | ||
+ | We will use some construction arguments to solve the problem. Let <math>\angle BAC=\alpha,</math> <math>\angle ABC=\beta,</math> <math>\angle ACB=\gamma,</math> and let <math>\angle APB=\theta.</math> We construct lines through the points <math>Q,</math> and <math>R</math> that intersect with <math>\triangle ABC</math> at the points <math>Q</math> and <math>R,</math> respectively, and that intersect each other at <math>T.</math> We will construct these lines such that <math>\angle CQV=\angle ARV=\theta.</math> | ||
+ | |||
+ | |||
+ | Now we let the intersections of <math>AP</math> with <math>RV</math> and <math>QU</math> be <math>Y'</math> and <math>Z',</math> respectively. This construction is as follows. | ||
+ | <asy> | ||
+ | import graph; size(12cm); | ||
+ | real labelscalefactor = 1.9; | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); | ||
+ | pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); | ||
+ | |||
+ | draw((-3.6988888888888977,6.426666666666669)--(-7.61,-5)--(7.09,-5)--cycle); | ||
+ | draw((-3.6988888888888977,6.426666666666669)--(-7.61,-5)); | ||
+ | draw((-7.61,-5)--(7.09,-5)); | ||
+ | draw((7.09,-5)--(-3.6988888888888977,6.426666666666669)); | ||
+ | draw((-3.6988888888888977,6.426666666666669)--(-2.958888888888898,-5)); | ||
+ | draw((-5.053354907372894,2.4694710603912564)--(1.7922953932137468,0.6108747864253139)); | ||
+ | draw((0.5968131669050584,1.8770271258031248)--(-5.8024625203461,-5)); | ||
+ | dot((-3.6988888888888977,6.426666666666669)); | ||
+ | label("$A$", (-3.6988888888888977,6.426666666666669), N * labelscalefactor); | ||
+ | dot((-7.61,-5)); | ||
+ | label("$B$", (-7.61,-5), SW * labelscalefactor); | ||
+ | dot((7.09,-5)); | ||
+ | label("$C$", (7.09,-5), SE * labelscalefactor); | ||
+ | dot((-2.958888888888898,-5)); | ||
+ | label("$P$", (-2.958888888888898,-5), S * labelscalefactor); | ||
+ | dot((0.5968131669050584,1.8770271258031248)); | ||
+ | label("$Q$", (0.5968131669050584,1.8770271258031248), NE * labelscalefactor); | ||
+ | dot((-5.053354907372894,2.4694710603912564)); | ||
+ | label("$R$", (-5.053354907372894,2.4694710603912564), dir(165) * labelscalefactor); | ||
+ | dot((-3.143912404905382,-2.142970212141873)); | ||
+ | label("$Z'$", (-3.143912404905382,-2.142970212141873), dir(170) * labelscalefactor); | ||
+ | dot((-3.413789986031826,2.0243286531799747)); | ||
+ | label("$Y'$", (-3.413789986031826,2.0243286531799747), NE * labelscalefactor); | ||
+ | dot((-3.3284001481939356,0.7057864725120093)); | ||
+ | label("$X$", (-3.3284001481939356,0.7057864725120093), dir(220) * labelscalefactor); | ||
+ | dot((1.7922953932137468,0.6108747864253139)); | ||
+ | label("$V$", (1.7922953932137468,0.6108747864253139), NE * labelscalefactor); | ||
+ | dot((-5.8024625203461,-5)); | ||
+ | label("$U$", (-5.8024625203461,-5), S * labelscalefactor); | ||
+ | dot((-0.10264330299819162,1.125351256231488)); | ||
+ | label("$T$", (-0.10264330299819162,1.125351256231488), dir(275) * labelscalefactor); | ||
+ | </asy> | ||
+ | |||
+ | We know that <math>\angle BRY'=180^\circ-\angle ARY'=180^\circ-\theta.</math> Hence, we have, | ||
+ | <cmath>\begin{align*} | ||
+ | \angle BRY'+\angle BPY' | ||
+ | &=180^\circ-\theta+\theta\\ | ||
+ | &=180^\circ. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Since the opposite angles of quadrilateral <math>RY'PB</math> add up to <math>180^\circ,</math> it must be cyclic. Similarly, we can also show that quadrilaterals <math>CQZ'P,</math> and <math>AQTR</math> are also cyclic. | ||
+ | |||
+ | Since points <math>Y'</math> and <math>Z'</math> lie on <math>AP,</math> we know that, | ||
+ | <cmath>Y'=\omega_B\cap AP</cmath> | ||
+ | and that | ||
+ | <cmath>Z'=\omega_C\cap AP.</cmath> | ||
+ | |||
+ | Hence, the points <math>Y'</math> and <math>Z'</math> coincide with the given points <math>Y</math> and <math>Z,</math> respectively. | ||
+ | |||
+ | Since quadrilateral <math>AQTR</math> is also cyclic, we have, | ||
+ | <cmath>\begin{align*} | ||
+ | \angle Y'TZ' | ||
+ | &=180^\circ-\angle RTQ\\ | ||
+ | &=180^\circ-(180^\circ-\angle RAQ)\\ | ||
+ | &=\angle RAQ\\ | ||
+ | &=\alpha. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Similarly, since quadrilaterals <math>CQZ'P,</math> and <math>AQTR</math> are also cyclic, we have, | ||
+ | <cmath>\begin{align*} | ||
+ | \angle TY'Z' | ||
+ | &=180^\circ-\angle RY'P\\ | ||
+ | &=180^\circ-(180^\circ-\angle RBP)\\ | ||
+ | &=\angle RBP\\ | ||
+ | &=\beta, | ||
+ | \end{align*}</cmath> | ||
+ | and, | ||
+ | <cmath>\begin{align*} | ||
+ | \angle Y'Z'T | ||
+ | &=180^\circ-\angle PZ'Q\\ | ||
+ | &=180^\circ-(180^\circ-\angle PCQ)\\ | ||
+ | &=\angle PCQ\\ | ||
+ | &=\gamma. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Since these three angles are of <math>\triangle TY'Z',</math> and they are equal to corresponding angles of <math>\triangle ABC,</math> by AA similarity, we know that <math>\triangle TY'Z'\sim \triangle ABC.</math> | ||
+ | |||
+ | We now consider the point <math>X=\omega_c\cap AC.</math> We know that the points <math>A,</math> <math>Q,</math> <math>T,</math> and <math>R</math> are concyclic. Hence, the points <math>A,</math> <math>T,</math> <math>X,</math> and <math>R</math> must also be concyclic. | ||
+ | |||
+ | Hence, quadrilateral <math>AQTX</math> is cyclic. | ||
+ | |||
+ | <asy> | ||
+ | import graph; size(12cm); | ||
+ | real labelscalefactor = 1.9; | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); | ||
+ | pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); | ||
+ | |||
+ | draw((-3.6988888888888977,6.426666666666669)--(-7.61,-5)--(7.09,-5)--cycle); | ||
+ | draw((-3.6988888888888977,6.426666666666669)--(-7.61,-5)); | ||
+ | draw((-7.61,-5)--(7.09,-5)); | ||
+ | draw((7.09,-5)--(-3.6988888888888977,6.426666666666669)); | ||
+ | draw((-3.6988888888888977,6.426666666666669)--(-2.958888888888898,-5)); | ||
+ | draw((-5.053354907372894,2.4694710603912564)--(1.7922953932137468,0.6108747864253139)); | ||
+ | draw((0.5968131669050584,1.8770271258031248)--(-5.8024625203461,-5)); | ||
+ | draw((-3.3284001481939356,0.7057864725120093)--(-0.10264330299819162,1.125351256231488)); | ||
+ | draw((-3.3284001481939356,0.7057864725120093)--(-5.053354907372894,2.4694710603912564)); | ||
+ | draw((-3.6988888888888977,6.426666666666669)--(-0.10264330299819162,1.125351256231488)); | ||
+ | dot((-3.6988888888888977,6.426666666666669)); | ||
+ | label("$A$", (-3.6988888888888977,6.426666666666669), N * labelscalefactor); | ||
+ | dot((-7.61,-5)); | ||
+ | label("$B$", (-7.61,-5), SW * labelscalefactor); | ||
+ | dot((7.09,-5)); | ||
+ | label("$C$", (7.09,-5), SE * labelscalefactor); | ||
+ | dot((-2.958888888888898,-5)); | ||
+ | label("$P$", (-2.958888888888898,-5), S * labelscalefactor); | ||
+ | dot((0.5968131669050584,1.8770271258031248)); | ||
+ | label("$Q$", (0.5968131669050584,1.8770271258031248), NE * labelscalefactor); | ||
+ | dot((-5.053354907372894,2.4694710603912564)); | ||
+ | label("$R$", (-5.053354907372894,2.4694710603912564), dir(165) * labelscalefactor); | ||
+ | dot((-3.143912404905382,-2.142970212141873)); | ||
+ | label("$Z'$", (-3.143912404905382,-2.142970212141873), dir(170) * labelscalefactor); | ||
+ | dot((-3.413789986031826,2.0243286531799747)); | ||
+ | label("$Y'$", (-3.413789986031826,2.0243286531799747), NE * labelscalefactor); | ||
+ | dot((-3.3284001481939356,0.7057864725120093)); | ||
+ | label("$X$", (-3.3284001481939356,0.7057864725120093), dir(220) * labelscalefactor); | ||
+ | dot((1.7922953932137468,0.6108747864253139)); | ||
+ | label("$V$", (1.7922953932137468,0.6108747864253139), NE * labelscalefactor); | ||
+ | dot((-5.8024625203461,-5)); | ||
+ | label("$U$", (-5.8024625203461,-5), S * labelscalefactor); | ||
+ | dot((-0.10264330299819162,1.125351256231488)); | ||
+ | label("$T$", (-0.10264330299819162,1.125351256231488), dir(275) * labelscalefactor); | ||
+ | </asy> | ||
+ | |||
+ | Since the angles <math>\angle ART</math> and <math>\angle AXT</math> are inscribed in the same arc <math>\overarc{AT},</math> we have, | ||
+ | <cmath>\begin{align*} | ||
+ | \angle AXT | ||
+ | &=\angle ART\\ | ||
+ | &=\theta. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Consider by this result, we can deduce that the homothety that maps <math>ABC</math> to <math>TY'Z'</math> will map <math>P</math> to <math>X.</math> Hence, we have that, | ||
+ | <cmath>Y'X/XZ'=BP/PC.</cmath> | ||
+ | |||
+ | Since <math>Y'=Y</math> and <math>Z'=Z</math> hence, | ||
+ | <cmath>YX/XZ=BP/PC,</cmath> | ||
+ | |||
+ | as required. | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 17:22, 10 May 2023
Problem
In triangle , points lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that .
Solution 1
In this solution, all lengths and angles are directed.
Firstly, it is easy to see by that concur at a point (the Miquel point). Let meet again at and , respectively. Then by Power of a Point, we have Thusly But we claim that . Indeed, and Therefore, . Analogously we find that and we are done.
courtesy v_enhance, minor clarification by integralarefun
Solution 2
Diagram Refer to the Diagram link.
By Miquel's Theorem, there exists a point at which intersect. We denote this point by Now, we angle chase: In addition, we have Now, by the Ratio Lemma, we have (by the Law of Sines in ) (by the Law of Sines in ) by the Ratio Lemma. The proof is complete.
Solution 3
Use directed angles modulo .
Lemma.
Proof.
Now, it follows that (now not using directed angles) using the facts that and , and are similar triangles, and that equals twice the circumradius of the circumcircle of .
Solution 4
We will use some construction arguments to solve the problem. Let and let We construct lines through the points and that intersect with at the points and respectively, and that intersect each other at We will construct these lines such that
Now we let the intersections of with and be and respectively. This construction is as follows.
We know that Hence, we have,
Since the opposite angles of quadrilateral add up to it must be cyclic. Similarly, we can also show that quadrilaterals and are also cyclic.
Since points and lie on we know that, and that
Hence, the points and coincide with the given points and respectively.
Since quadrilateral is also cyclic, we have,
Similarly, since quadrilaterals and are also cyclic, we have, and,
Since these three angles are of and they are equal to corresponding angles of by AA similarity, we know that
We now consider the point We know that the points and are concyclic. Hence, the points and must also be concyclic.
Hence, quadrilateral is cyclic.
Since the angles and are inscribed in the same arc we have,
Consider by this result, we can deduce that the homothety that maps to will map to Hence, we have that,
Since and hence,
as required.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.