Difference between revisions of "1991 AHSME Problems/Problem 30"

m (Solution)
m (Solution 2 (PIE))
 
(14 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
For any set <math>S</math>, let <math>|S|</math> denote the number of elements in <math>S</math>, and let <math>n(S)</math> be the number of subsets of <math>S</math>, including the empty set and the set <math>S</math> itself. If <math>A</math>, <math>B</math>, and <math>C</math> are sets for which <math>n(A)+n(B)+n(C)=n(A\cup B\cup C)</math> and <math>|A|=|B|=100</math>, then what is the minimum possible value of <math>|A\cap B\cap C|</math>?
 
For any set <math>S</math>, let <math>|S|</math> denote the number of elements in <math>S</math>, and let <math>n(S)</math> be the number of subsets of <math>S</math>, including the empty set and the set <math>S</math> itself. If <math>A</math>, <math>B</math>, and <math>C</math> are sets for which <math>n(A)+n(B)+n(C)=n(A\cup B\cup C)</math> and <math>|A|=|B|=100</math>, then what is the minimum possible value of <math>|A\cap B\cap C|</math>?
  
(A) 96 (B) 97 (C) 98 (D) 99 (E) 100
+
<math>(A) 96 \ (B) 97 \ (C) 98 \ (D) 99 \ (E) 100</math>
  
== Solution ==
+
== Solution 1==
<math>\fbox{B}</math>
+
<math>n(A)=n(B)=2^{100}</math>, so  <math>n(C)</math> and <math>n(A \cup B \cup C)</math> are integral powers of <math>2</math> <math>\Longrightarrow</math> <math>n(C)=2^{101}</math> and <math>n(A \cup B \cup C)=2^{102}</math>. Let <math>A=\{s_1,s_2,s_3,...,s_{100}\}</math>, <math>B=\{s_3,s_4,s_5,...,s_{102}\}</math>, and <math>C=\{s_1,s_2,s_3,...,s_{k-2},s_{k-1},s_{k+1},s_{k+2},...,s_{100},s_{101},s_{102}\}</math> where <math>s_k \in A \cap B</math>
 +
Thus, the minimum value of <math>|A\cap B \cap C|</math> is <math>\fbox{B=97}</math>
 +
 
 +
==Solution 2 (PIE) ==
 +
 
 +
As <math>|A|=|B|=100</math>, <math>n(A)=n(B)=2^{100}</math>
 +
 
 +
As <math>n(A)+n(B)+n(C)=n(A \cup B \cup C)</math>, <math>2^{|A|}+2^{|B|}+2^{|C|}=2^{|A \cup B \cup C|}</math>, <math>2^{100}+2^{100}+2^{|C|}=2^{|A \cup B \cup C|}</math>
 +
 
 +
<math>2^{101}+2^{|C|}=2^{|A \cup B \cup C|}</math> as <math>|C|</math> and <math>|A \cup B \cup C|</math> are integers, <math>|C|=101</math> and <math>|A \cup B \cup C| = 102</math>
 +
 
 +
By the [[Principle of Inclusion-Exclusion]], <math>|A \cup B| = |A| + |B| - |A \cap B| = 200 - |A \cap B|</math>
 +
 
 +
<math>|A|=|B| \le |A \cup B| \le |A \cup B \cup C|</math>, <math>100 \le |A \cup B| \le 102</math>, <math>98 \le |A \cap B| \le 100</math>
 +
 
 +
By the [[Principle of Inclusion-Exclusion]], <math>|A \cup C| = |A| + |C| - |A \cap C| = 201 - |A \cap C|</math>
 +
 
 +
<math>|C| \le |A \cup C| \le |A \cup B \cup C|</math>, <math>101 \le |A \cup C| \le 102</math>, <math>99 \le |A \cap C| \le 100</math>
 +
 
 +
By the [[Principle of Inclusion-Exclusion]], <math>|B \cup C| = |B| + |C| - |B \cap C| = 201 - |B \cap C|</math>
 +
 
 +
<math>|C| \le |B \cup C| \le |A \cup B \cup C|</math>, <math>101 \le |B \cup C| \le 102</math>, <math>99 \le |B \cap C| \le 100</math>
 +
 
 +
By the [[Principle of Inclusion-Exclusion]], <math>|A \cap B \cap C|=|A \cup B \cup C|- |A| - |B| - |C| + |A \cap B| + |A \cap C|+|B \cap C| = 102-100-100-101+ |A \cap B| + |A \cap C|</math>
 +
<math>+|B \cap C|=|A \cap B| + |A \cap C|+|B \cap C| -199</math>
 +
 
 +
<cmath>98 + 99 + 99 - 199 \le |A \cap B \cap C| \le 100+100+100-199</cmath>
 +
 
 +
<cmath>\boxed{\textbf{97}} \le |A \cap B \cap C| \le 101</cmath>
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
  
 
== See also ==
 
== See also ==

Latest revision as of 10:29, 6 May 2023

Problem

For any set $S$, let $|S|$ denote the number of elements in $S$, and let $n(S)$ be the number of subsets of $S$, including the empty set and the set $S$ itself. If $A$, $B$, and $C$ are sets for which $n(A)+n(B)+n(C)=n(A\cup B\cup C)$ and $|A|=|B|=100$, then what is the minimum possible value of $|A\cap B\cap C|$?

$(A) 96 \ (B) 97 \ (C) 98 \ (D) 99 \ (E) 100$

Solution 1

$n(A)=n(B)=2^{100}$, so $n(C)$ and $n(A \cup B \cup C)$ are integral powers of $2$ $\Longrightarrow$ $n(C)=2^{101}$ and $n(A \cup B \cup C)=2^{102}$. Let $A=\{s_1,s_2,s_3,...,s_{100}\}$, $B=\{s_3,s_4,s_5,...,s_{102}\}$, and $C=\{s_1,s_2,s_3,...,s_{k-2},s_{k-1},s_{k+1},s_{k+2},...,s_{100},s_{101},s_{102}\}$ where $s_k \in A \cap B$ Thus, the minimum value of $|A\cap B \cap C|$ is $\fbox{B=97}$

Solution 2 (PIE)

As $|A|=|B|=100$, $n(A)=n(B)=2^{100}$

As $n(A)+n(B)+n(C)=n(A \cup B \cup C)$, $2^{|A|}+2^{|B|}+2^{|C|}=2^{|A \cup B \cup C|}$, $2^{100}+2^{100}+2^{|C|}=2^{|A \cup B \cup C|}$

$2^{101}+2^{|C|}=2^{|A \cup B \cup C|}$ as $|C|$ and $|A \cup B \cup C|$ are integers, $|C|=101$ and $|A \cup B \cup C| = 102$

By the Principle of Inclusion-Exclusion, $|A \cup B| = |A| + |B| - |A \cap B| = 200 - |A \cap B|$

$|A|=|B| \le |A \cup B| \le |A \cup B \cup C|$, $100 \le |A \cup B| \le 102$, $98 \le |A \cap B| \le 100$

By the Principle of Inclusion-Exclusion, $|A \cup C| = |A| + |C| - |A \cap C| = 201 - |A \cap C|$

$|C| \le |A \cup C| \le |A \cup B \cup C|$, $101 \le |A \cup C| \le 102$, $99 \le |A \cap C| \le 100$

By the Principle of Inclusion-Exclusion, $|B \cup C| = |B| + |C| - |B \cap C| = 201 - |B \cap C|$

$|C| \le |B \cup C| \le |A \cup B \cup C|$, $101 \le |B \cup C| \le 102$, $99 \le |B \cap C| \le 100$

By the Principle of Inclusion-Exclusion, $|A \cap B \cap C|=|A \cup B \cup C|- |A| - |B| - |C| + |A \cap B| + |A \cap C|+|B \cap C| = 102-100-100-101+ |A \cap B| + |A \cap C|$ $+|B \cap C|=|A \cap B| + |A \cap C|+|B \cap C| -199$

\[98 + 99 + 99 - 199 \le |A \cap B \cap C| \le 100+100+100-199\]

\[\boxed{\textbf{97}} \le |A \cap B \cap C| \le 101\]

~isabelchen

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png