Difference between revisions of "2015 AMC 10B Problems/Problem 1"

(Created page with "==Problem== What is the value of <math>2-(-2)^{-2}</math>? <math>\textbf{(A) } -2\qquad\textbf{(B) } \dfrac{1}{16}\qquad\textbf{(C) } \dfrac{7}{4}\qquad\textbf{(D) } \dfrac{9...")
 
(Video Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
<math>2-(-2)^{-2}=2-\frac{1}{(-2)^2}=2-\frac{1}{4}=\frac{8}{4}-\frac{1}{4}=\boxed{\textbf{(C) }\frac{7}{4}}</math>
 
<math>2-(-2)^{-2}=2-\frac{1}{(-2)^2}=2-\frac{1}{4}=\frac{8}{4}-\frac{1}{4}=\boxed{\textbf{(C) }\frac{7}{4}}</math>
 +
 +
==Video Solution==
 +
https://youtu.be/PDP90xfdGdk
 +
 +
~Education, the Study of Everything
 +
 +
==Video Solution==
 +
https://youtu.be/0j5_-SaZdJ8
 +
 +
~savannahsolver
 +
 +
==See Also==
 +
{{AMC10 box|year=2015|ab=B|before=First Problem|num-a=2}}
 +
{{MAA Notice}}

Latest revision as of 16:09, 2 August 2022

Problem

What is the value of $2-(-2)^{-2}$?

$\textbf{(A) } -2\qquad\textbf{(B) } \dfrac{1}{16}\qquad\textbf{(C) } \dfrac{7}{4}\qquad\textbf{(D) } \dfrac{9}{4}\qquad\textbf{(E) } 6$

Solution

$2-(-2)^{-2}=2-\frac{1}{(-2)^2}=2-\frac{1}{4}=\frac{8}{4}-\frac{1}{4}=\boxed{\textbf{(C) }\frac{7}{4}}$

Video Solution

https://youtu.be/PDP90xfdGdk

~Education, the Study of Everything

Video Solution

https://youtu.be/0j5_-SaZdJ8

~savannahsolver

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png