Difference between revisions of "2015 AMC 8 Problems/Problem 15"

(Solution 1)
 
(37 intermediate revisions by 26 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
At Euler Middle School, <math>198</math> students voted on two issues in a school referendum with the following results: <math>149</math> voted in favor of the first issue and <math>119</math> voted in favor of the second issue. If there were exactly <math>29</math> students who voted against both issues, how many students voted in favor of both issues?
 
At Euler Middle School, <math>198</math> students voted on two issues in a school referendum with the following results: <math>149</math> voted in favor of the first issue and <math>119</math> voted in favor of the second issue. If there were exactly <math>29</math> students who voted against both issues, how many students voted in favor of both issues?
  
 
<math>\textbf{(A) }49\qquad\textbf{(B) }70\qquad\textbf{(C) }79\qquad\textbf{(D) }99\qquad \textbf{(E) }149</math>
 
<math>\textbf{(A) }49\qquad\textbf{(B) }70\qquad\textbf{(C) }79\qquad\textbf{(D) }99\qquad \textbf{(E) }149</math>
 +
 +
==Solutions==
 +
 +
==Solution 1==
 +
We can see that this is a Venn Diagram Problem.
 +
 +
First, we analyze the information given. There are <math>198</math> students. Let's use A as the first issue and B as the second issue.
 +
 +
<math>149</math> students were for A, and <math>119</math> students were for B. There were also <math>29</math> students against both A and B.
 +
 +
Solving this without a Venn Diagram, we subtract <math>29</math> away from the total, <math>198</math>. Out of the remaining <math>169</math> , we have <math>149</math> people for A and
 +
 +
<math>119</math> people for B. We add this up to get <math>268</math> . Since that is more than what we need, we subtract <math>169</math> from <math>268</math> to get
 +
 +
<math>\boxed{\textbf{(D)}~99}</math>.
 +
 +
<asy>
 +
defaultpen(linewidth(0.7));
 +
draw(Circle(origin, 5));
 +
draw(Circle((5,0), 5));
 +
label("$A$", (0,5), N);
 +
label("$B$", (5,5), N);
 +
label("$99$", (2.5, -0.5), N);
 +
label("$50$", (-2.5,-0.5), N);
 +
label("$20$", (7.5, -0.5), N);
 +
</asy>
 +
 +
Note: One could use the Principle of Inclusion-Exclusion in a similar way to achieve the same result.
 +
 +
~ cxsmi (note)
 +
 +
  <!--(to editors: this looks really weird)Venn Diagram (I couldn't make circles),
 +
                                              We need to know how many voted in favor for both
 +
 +
 +
                                Issue A              Against both issues        Issue B
 +
                                149 students                29 students          119 students
 +
 +
 +
                                                          149+29+119=297
 +
                                                297-198=99 students in favor for both -->
 +
 +
<!--made into comment because there is a venn diagram available now-->
 +
 +
==Video Solution (HOW TO THINK CRITICALLY!!!)==
 +
https://youtu.be/skOXiXCZVK0
 +
 +
~Education, the Study of Everything
 +
 +
 +
===Video Solution===
 +
https://youtu.be/OOdK-nOzaII?t=827
 +
 +
https://youtu.be/ATpixMaV-z4
 +
 +
~savannahsolver
  
 
==See Also==
 
==See Also==

Latest revision as of 00:41, 15 January 2024

Problem

At Euler Middle School, $198$ students voted on two issues in a school referendum with the following results: $149$ voted in favor of the first issue and $119$ voted in favor of the second issue. If there were exactly $29$ students who voted against both issues, how many students voted in favor of both issues?

$\textbf{(A) }49\qquad\textbf{(B) }70\qquad\textbf{(C) }79\qquad\textbf{(D) }99\qquad \textbf{(E) }149$

Solutions

Solution 1

We can see that this is a Venn Diagram Problem.

First, we analyze the information given. There are $198$ students. Let's use A as the first issue and B as the second issue.

$149$ students were for A, and $119$ students were for B. There were also $29$ students against both A and B.

Solving this without a Venn Diagram, we subtract $29$ away from the total, $198$. Out of the remaining $169$ , we have $149$ people for A and

$119$ people for B. We add this up to get $268$ . Since that is more than what we need, we subtract $169$ from $268$ to get

$\boxed{\textbf{(D)}~99}$.

[asy] defaultpen(linewidth(0.7)); draw(Circle(origin, 5)); draw(Circle((5,0), 5)); label("$A$", (0,5), N); label("$B$", (5,5), N); label("$99$", (2.5, -0.5), N); label("$50$", (-2.5,-0.5), N); label("$20$", (7.5, -0.5), N); [/asy]

Note: One could use the Principle of Inclusion-Exclusion in a similar way to achieve the same result.

~ cxsmi (note)


Video Solution (HOW TO THINK CRITICALLY!!!)

https://youtu.be/skOXiXCZVK0

~Education, the Study of Everything


Video Solution

https://youtu.be/OOdK-nOzaII?t=827

https://youtu.be/ATpixMaV-z4

~savannahsolver

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png