Difference between revisions of "1991 AHSME Problems/Problem 29"

m (Problem)
(See also)
 
(2 intermediate revisions by 2 users not shown)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{B}</math>
+
<math>ABC</math> has side length <math>3</math>. Let <math>AP=A'P=x</math> and <math>AQ=A'Q=y</math>. Thus, <math>BP=3-x</math> and <math>CQ=3-y</math>. Applying Law of Cosines on triangles <math>BPA'</math> and <math>CQA'</math> using the <math>60^{\circ}</math> angles gives <math>x=\frac{7}{5}</math> and <math>y=\frac{7}{4}</math>. Applying Law of Cosines once again on triangle <math>APQ</math> using the <math>60^{\circ}</math> angle gives <cmath>PQ^2=\frac{(21)(49)}{400}</cmath> so <cmath>PQ=\frac{7}{20}\sqrt{21}</cmath> The correct answer is <math>\fbox{(B)}</math>.
  
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1991|num-b=28|num-a=30}}   
 
{{AHSME box|year=1991|num-b=28|num-a=30}}   
  
[[Category: Intermediate Algebra Problems]]
+
[[Category: Intermediate Trigonometry Problems]]
{{MAA Notice}}Geometry
+
{{MAA Notice}}

Latest revision as of 21:05, 20 April 2024

Problem

Equilateral triangle $ABC$ has $P$ on $AB$ and $Q$ on $AC$. The triangle is folded along $PQ$ so that vertex $A$ now rests at $A'$ on side $BC$. If $BA'=1$ and $A'C=2$ then the length of the crease $PQ$ is

$\text{(A) } \frac{8}{5} \text{(B) } \frac{7}{20}\sqrt{21} \text{(C) } \frac{1+\sqrt{5}}{2} \text{(D) } \frac{13}{8} \text{(E) } \sqrt{3}$

Solution

$ABC$ has side length $3$. Let $AP=A'P=x$ and $AQ=A'Q=y$. Thus, $BP=3-x$ and $CQ=3-y$. Applying Law of Cosines on triangles $BPA'$ and $CQA'$ using the $60^{\circ}$ angles gives $x=\frac{7}{5}$ and $y=\frac{7}{4}$. Applying Law of Cosines once again on triangle $APQ$ using the $60^{\circ}$ angle gives \[PQ^2=\frac{(21)(49)}{400}\] so \[PQ=\frac{7}{20}\sqrt{21}\] The correct answer is $\fbox{(B)}$.

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png