Difference between revisions of "1991 AHSME Problems/Problem 6"

(Added a solution with explanation)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
 
If <math>x\geq 0</math>, then <math>\sqrt{x\sqrt{x\sqrt{x}}}=</math>
 
If <math>x\geq 0</math>, then <math>\sqrt{x\sqrt{x\sqrt{x}}}=</math>
  
(A) <math>x\sqrt{x}</math> (B) <math>x \sqrt[4]{x}</math> (C) <math>\sqrt[8]{x}</math> (D) <math>\sqrt[8]{x^3}</math> (E) <math>\sqrt[8]{x^7}</math>
+
<math>\textbf{(A) } x\sqrt{x}\qquad
 +
\textbf{(B) } x\sqrt[4]{x}\qquad
 +
\textbf{(C) } \sqrt[8]{x}\qquad
 +
\textbf{(D) } \sqrt[8]{x^3}\qquad
 +
\textbf{(E) } \sqrt[8]{x^7}</math>
  
 
== Solution ==
 
== Solution ==
<math>\fbox{E}</math> We have <math>\sqrt{x} = x^{\frac{1}{2}}, x\sqrt{x} = x^{\frac{3}{2}}</math>, then square-rooting that gives <math>x^{\frac{3}{4}}</math>, then multiplying by <math>x</math> gives <math>x^{\frac{7}{4}}</math>, then square-rooting this gives <math>x^{\frac{7}{8}}</math>.
+
Recall that square roots are one-half powers, namely <math>\sqrt y=y^{\frac12}</math> for all <math>y\geq0.</math>
 +
 
 +
We have
 +
<cmath>\begin{align*}
 +
\sqrt{x\sqrt{x\sqrt{x}}} &= \sqrt{x\sqrt{x\cdot x^{\frac12}}} \\
 +
&= \sqrt{x\sqrt{x^{\frac32}}} \\
 +
&= \sqrt{x\cdot\left(x^{\frac32}\right)^{\frac12}} \\
 +
&= \sqrt{x^{\frac74}} \\
 +
&= \left(x^{\frac74}\right)^{\frac12} \\
 +
&= x^{\frac78} \\
 +
&= \boxed{\textbf{(E) } \sqrt[8]{x^7}}.
 +
\end{align*}</cmath>
 +
~Hapaxoromenon (Solution)
 +
 
 +
~MRENTHUSIASM (Reformatting)
  
 
== See also ==
 
== See also ==

Latest revision as of 17:13, 5 September 2021

Problem

If $x\geq 0$, then $\sqrt{x\sqrt{x\sqrt{x}}}=$

$\textbf{(A) } x\sqrt{x}\qquad \textbf{(B) } x\sqrt[4]{x}\qquad \textbf{(C) } \sqrt[8]{x}\qquad \textbf{(D) } \sqrt[8]{x^3}\qquad \textbf{(E) } \sqrt[8]{x^7}$

Solution

Recall that square roots are one-half powers, namely $\sqrt y=y^{\frac12}$ for all $y\geq0.$

We have \begin{align*} \sqrt{x\sqrt{x\sqrt{x}}} &= \sqrt{x\sqrt{x\cdot x^{\frac12}}} \\ &= \sqrt{x\sqrt{x^{\frac32}}} \\ &= \sqrt{x\cdot\left(x^{\frac32}\right)^{\frac12}} \\ &= \sqrt{x^{\frac74}} \\ &= \left(x^{\frac74}\right)^{\frac12} \\ &= x^{\frac78} \\ &= \boxed{\textbf{(E) } \sqrt[8]{x^7}}. \end{align*} ~Hapaxoromenon (Solution)

~MRENTHUSIASM (Reformatting)

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png