Difference between revisions of "1973 AHSME Problems/Problem 17"

(Solution to Problem 17)
 
(See Also)
 
Line 24: Line 24:
  
 
==See Also==
 
==See Also==
{{AHSME 35p box|year=1973|num-b=16|num-a=18}}
+
{{AHSME 30p box|year=1973|num-b=16|num-a=18}}
  
 
[[Category:Introductory Trigonometry Problems]]
 
[[Category:Introductory Trigonometry Problems]]

Latest revision as of 13:00, 20 February 2020

Problem

If $\theta$ is an acute angle and $\sin \frac12 \theta = \sqrt{\frac{x-1}{2x}}$, then $\tan \theta$ equals

$\textbf{(A)}\ x \qquad \textbf{(B)}\ \frac1{x} \qquad \textbf{(C)}\ \frac{\sqrt{x-1}}{x+1} \qquad \textbf{(D)}\ \frac{\sqrt{x^2-1}}{x} \qquad \textbf{(E)}\ \sqrt{x^2-1}$

Solution

Since $\tfrac{\theta}{2}$ is acute and $\cos \tfrac{\theta}{2} = \sqrt{1 - \sin (\tfrac{\theta}{2})^2}$, \[\cos \frac{\theta}{2} = \sqrt{1 - (\frac{x-1}{2x})^2}\] \[\cos \frac{\theta}{2} = \sqrt{\frac{x+1}{2x}}\] Using the definition of tangent, \[\tan \frac{\theta}{2} = \sqrt{\frac{x-1}{2x}} \div \sqrt{\frac{x+1}{2x}}\] \[\tan \frac{\theta}{2} = \sqrt{\frac{x-1}{x+1}}\] Finally, by using the Double Angle Identity for Tangent, \[\tan \theta = \frac{2 \cdot \sqrt{\frac{x-1}{x+1}}}{1 - \frac{x-1}{x+1}}\] \[\tan \theta = \frac{\frac{2\sqrt{x^2-1}}{x+1}}{\frac{2}{x+1}}\] \[\tan \theta = \sqrt{x^2-1}\] The answer is $\boxed{\textbf{(E)}}$.

See Also

1973 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions