Difference between revisions of "2005 AIME II Problems/Problem 7"

(Format; category tag)
m (See Also)
Line 21: Line 21:
 
== See Also ==
 
== See Also ==
  
 +
*[[2005 AIME II Problems/Problem 6| Previous problem]]
 +
*[[2005 AIME II Problems/Problem 8| Next problem]]
 
*[[2005 AIME II Problems]]
 
*[[2005 AIME II Problems]]
  
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 19:57, 7 September 2006

Problem

Let $x=\frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}.$ Find $(x+1)^{48}.$

Solution

We note that in general,

$\displaystyle {} (\sqrt[2^n]{5} + 1)(\sqrt[2^n]{5} - 1) = (\sqrt[2^n]{5})^2 - 1^2 = \sqrt[2^{n-1}]{5} - 1$.

It now becomes apparent that if we multiply the numerator and denominator of $\displaystyle \frac{4}{ (\sqrt{5}+1) (\sqrt[4]{5}+1) (\sqrt[8]{5}+1) (\sqrt[16]{5}+1) }$ by $\displaystyle (\sqrt[16]{5} - 1)$, the denominator will telescope to $\displaystyle \sqrt[1]{5} - 1 = 4$, so

$\displaystyle x = \frac{4(\sqrt[16]{5} - 1)}{4} = \sqrt[16]{5} - 1$.

It follows that $(x + 1)^{48} = (\sqrt[16]5)^{48} = 5^3 = 125$

See Also