Difference between revisions of "2015 AMC 12A Problems/Problem 20"
m (→Solution 3) |
m (→Solution) |
||
Line 18: | Line 18: | ||
===Solution 1.1=== | ===Solution 1.1=== | ||
− | The area is <math>12</math>, the semiperimeter is <math>9</math>, and <math>a = 9 - \frac12b</math>. Using Heron's formula, <math>\sqrt{9\left(\frac{b}{2}\right)\left(\frac{b}{2}\right)(9-b)} = 12</math>. Squaring both sides and simplifying, we have <math>-b^3+9b-64=0</math>. Since we know <math>b = 8</math> is a solution, we divide by <math>b - 8</math> to get the other solution. Thus, <math>b^2 - b - 8 = 0</math>, so <math>b = \dfrac{1 + \sqrt{33}}{2} < \dfrac{1 + 6}{2} = 3.5.</math> The answer is <math>\boxed{\textbf{(A)}}</math>. | + | The area is <math>12</math>, the semiperimeter is <math>9</math>, and <math>a = 9 - \frac12b</math>. Using Heron's formula, <math>\sqrt{9\left(\frac{b}{2}\right)\left(\frac{b}{2}\right)(9-b)} = 12</math>. Squaring both sides and simplifying, we have <math>-b^3+9b-64=0</math>. Since we know <math>b = 8</math> is a solution, we divide by <math>b - 8</math> to get the other solution. Thus, <math>b^2 - b - 8 = 0</math>, so <math>b = \dfrac{1 + \sqrt{33}}{2} < \dfrac{1 + 6}{2} = 3.5.</math> The answer is <math>\boxed{\textbf{(A) }3}</math>. |
===Solution 2=== | ===Solution 2=== | ||
Line 43: | Line 43: | ||
Utilizing the quadratic formula gives | Utilizing the quadratic formula gives | ||
<cmath>b=\frac{1\pm\sqrt{33}}{2}</cmath> | <cmath>b=\frac{1\pm\sqrt{33}}{2}</cmath> | ||
− | We clearly must pick the positive solution. Note that <math>5<\sqrt{33}<6</math>, and so <math>{3<\frac{1+\sqrt{33}}{2}<\frac{7}{2}}</math>, which clearly gives an answer of <math>\ | + | We clearly must pick the positive solution. Note that <math>5<\sqrt{33}<6</math>, and so <math>{3<\frac{1+\sqrt{33}}{2}<\frac{7}{2}}</math>, which clearly gives an answer of <math>\boxed{\textbf{(A) }3}</math>, as desired. |
===Solution 3=== | ===Solution 3=== | ||
Line 62: | Line 62: | ||
We get <math>67.375</math> which is too high, so we know that <math>b < 3.5</math>. | We get <math>67.375</math> which is too high, so we know that <math>b < 3.5</math>. | ||
− | + | Thus the answer is <math>\boxed{\textbf{(A) }3}</math> | |
===Operation Descartes=== | ===Operation Descartes=== | ||
For this new triangle, say its legs have length <math>d</math> and the base length <math>2c</math>. To see why I did this, draw the triangle on a Cartesian plane where the altitude is part of the y-axis! Then, we notice that <math>c+d=9</math> and <math>c*\sqrt{d^2-c^2}=12</math>. It's better to let a side be some variable so we avoid having to add non-square roots and square-roots!! | For this new triangle, say its legs have length <math>d</math> and the base length <math>2c</math>. To see why I did this, draw the triangle on a Cartesian plane where the altitude is part of the y-axis! Then, we notice that <math>c+d=9</math> and <math>c*\sqrt{d^2-c^2}=12</math>. It's better to let a side be some variable so we avoid having to add non-square roots and square-roots!! | ||
− | Now, modify the square-root equation with <math>d=9-c</math>; you get <math>c^2*(81-18c)=144</math>, so <math>-18c^3+81c^2=144</math>. Divide by <math>-9</math> to get <math>2c^3-9c^2+16=0</math>. Obviously, <math>c=4</math> is a root as established by triangle <math>T</math>! So, use synthetic division to obtain <math>2c^2-c-4=0</math>, upon which <math>c=\frac{1+\sqrt{33}}{4}</math>, which is closest to <math>\frac{3}{2}</math> (as opposed to <math>2</math>). That's enough to confirm that the answer has to be <math>\textbf{A}</math>. | + | Now, modify the square-root equation with <math>d=9-c</math>; you get <math>c^2*(81-18c)=144</math>, so <math>-18c^3+81c^2=144</math>. Divide by <math>-9</math> to get <math>2c^3-9c^2+16=0</math>. Obviously, <math>c=4</math> is a root as established by triangle <math>T</math>! So, use synthetic division to obtain <math>2c^2-c-4=0</math>, upon which <math>c=\frac{1+\sqrt{33}}{4}</math>, which is closest to <math>\frac{3}{2}</math> (as opposed to <math>2</math>). That's enough to confirm that the answer has to be <math>\boxed{\textbf{(A) }3}</math>. |
== See Also == | == See Also == | ||
{{AMC12 box|year=2015|ab=A|num-b=19|num-a=21}} | {{AMC12 box|year=2015|ab=A|num-b=19|num-a=21}} |
Revision as of 12:33, 1 February 2019
Contents
Problem
Isosceles triangles and are not congruent but have the same area and the same perimeter. The sides of have lengths , , and , while those of have lengths , , and . Which of the following numbers is closest to ?
Solution
Solution 1
The area of is and the perimeter is 18.
The area of is and the perimeter is .
Thus , so .
Thus , so .
We square and divide 36 from both sides to obtain , so . Since we know is a solution, we divide by to get the other solution. Thus, , so The answer is .
Solution 1.1
The area is , the semiperimeter is , and . Using Heron's formula, . Squaring both sides and simplifying, we have . Since we know is a solution, we divide by to get the other solution. Thus, , so The answer is .
Solution 2
Triangle , being isosceles, has an area of and a perimeter of . Triangle similarly has an area of and .
Now we apply our computational fortitude.
Plug in to obtain Plug in to obtain We know that is a valid solution by . Factoring out , we obtain Utilizing the quadratic formula gives We clearly must pick the positive solution. Note that , and so , which clearly gives an answer of , as desired.
Solution 3
Triangle T has perimeter so .
Using Heron's, we get .
We know that from above so we plug that in, and we also know that then .
We plug in 3 for in the LHS, and we get 54 which is too low. We plug in 4 for in the LHS, and we get 80 which is too high. We now know that is some number between 3 and 4.
If , then we would round up to 4, but if , then we would round down to 3. So let us plug in 3.5 for .
We get which is too high, so we know that .
Thus the answer is
Operation Descartes
For this new triangle, say its legs have length and the base length . To see why I did this, draw the triangle on a Cartesian plane where the altitude is part of the y-axis! Then, we notice that and . It's better to let a side be some variable so we avoid having to add non-square roots and square-roots!!
Now, modify the square-root equation with ; you get , so . Divide by to get . Obviously, is a root as established by triangle ! So, use synthetic division to obtain , upon which , which is closest to (as opposed to ). That's enough to confirm that the answer has to be .
See Also
2015 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |