Difference between revisions of "2019 AMC 10A Problems/Problem 19"
m (→Solution 5) |
Sevenoptimus (talk | contribs) m (Fixed formatting and removed irrelevant attributions) |
||
Line 7: | Line 7: | ||
==Solution 1== | ==Solution 1== | ||
− | Grouping the first and last terms and two middle terms gives <math>(x^2+5x+4)(x^2+5x+6)+2019</math>, which can be simplified | + | |
+ | Grouping the first and last terms and two middle terms gives <math>(x^2+5x+4)(x^2+5x+6)+2019</math>, which can be simplified to <math>(x^2+5x+5)^2-1+2019</math>. Noting that squares are nonnegative, and verifying that <math>x^2+5x+5=0</math> for some real <math>x</math>, the answer is <math>\boxed{\textbf{(B) } 2018}</math>. | ||
==Solution 2== | ==Solution 2== | ||
Line 13: | Line 14: | ||
Let <math>a=x+\tfrac{5}{2}</math>. Then <math>(x+1)(x+2)(x+3)(x+4)</math> becomes <math>(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})</math>. | Let <math>a=x+\tfrac{5}{2}</math>. Then <math>(x+1)(x+2)(x+3)(x+4)</math> becomes <math>(a-\tfrac{3}{2})(a-\tfrac{1}{2})(a+\tfrac{1}{2})(a+\tfrac{3}{2})</math>. | ||
− | We can use difference of squares to get <math>(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})</math>, and expand this to get <math>a^4-\tfrac{5}{2}a^2+\tfrac{9}{16}</math>. | + | We can use the difference of two squares to get <math>(a^2-\tfrac{9}{4})(a^2-\tfrac{1}{4})</math>, and expand this to get <math>a^4-\tfrac{5}{2}a^2+\tfrac{9}{16}</math>. |
Refactor this by completing the square to get <math>(a^2-\tfrac{5}{4})^2-1</math>, which has a minimum value of <math>-1</math>. The answer is thus <math>2019-1=\boxed{2018}</math>. | Refactor this by completing the square to get <math>(a^2-\tfrac{5}{4})^2-1</math>, which has a minimum value of <math>-1</math>. The answer is thus <math>2019-1=\boxed{2018}</math>. | ||
− | |||
− | |||
==Solution 3 (using calculus)== | ==Solution 3 (using calculus)== | ||
Line 35: | Line 34: | ||
To minimize the result, we use <math>y=-5</math>. Hence, the minimum is <math>(-5+4)(-5+6)=-1</math>, so <math>-1+2019 = \boxed{\textbf{(B) }2018}</math>. | To minimize the result, we use <math>y=-5</math>. Hence, the minimum is <math>(-5+4)(-5+6)=-1</math>, so <math>-1+2019 = \boxed{\textbf{(B) }2018}</math>. | ||
− | + | ''Note'': The minimum/maximum point of a parabola <math>y = ax^2 + bx + c</math> occurs at <math>x=-\frac{b}{2a}</math>. | |
− | + | ==Solution 4== | |
− | |||
The expression is negative when an odd number of the factors are negative. This happens when <math>-2 < x < -1</math> or <math>-4 < x -3</math>. Plugging in <math>x = -\frac32</math> or <math>x = -\frac72</math> yields <math>-\frac{15}{16}</math>, which is very close to <math>-1</math>. <math>-1 + 2019 = \boxed{\textbf{(B) }2018}</math>. | The expression is negative when an odd number of the factors are negative. This happens when <math>-2 < x < -1</math> or <math>-4 < x -3</math>. Plugging in <math>x = -\frac32</math> or <math>x = -\frac72</math> yields <math>-\frac{15}{16}</math>, which is very close to <math>-1</math>. <math>-1 + 2019 = \boxed{\textbf{(B) }2018}</math>. | ||
==Solution 5 (using the answer choices) == | ==Solution 5 (using the answer choices) == | ||
− | Using the answer choices, we know that <math>\textbf{(C)}</math> , <math>\textbf{(D)}</math> , and <math>\textbf{(E)}</math> are impossible since <math>(x+1)(x+2)(x+3)(x+4)</math> can be negative (as seen when <math>x = -\frac{3}{2}</math>). Plug in <math>x = -\frac{3}{2}</math> to see that it becomes <math>2019 - \frac{15}{16}</math> so round this to <math>\boxed{\textbf{(B) }2018}</math>. | + | |
+ | Using the answer choices, we know that <math>\textbf{(C)}</math> , <math>\textbf{(D)}</math> , and <math>\textbf{(E)}</math> are impossible since <math>(x+1)(x+2)(x+3)(x+4)</math> can be negative (as seen when <math>x = -\frac{3}{2}</math>). Plug in <math>x = -\frac{3}{2}</math> to see that it becomes <math>2019 - \frac{15}{16}</math>, so round this to <math>\boxed{\textbf{(B) }2018}</math>. | ||
==Video Solution== | ==Video Solution== |
Revision as of 20:37, 17 February 2019
Contents
Problem
What is the least possible value of where is a real number?
Solution 1
Grouping the first and last terms and two middle terms gives , which can be simplified to . Noting that squares are nonnegative, and verifying that for some real , the answer is .
Solution 2
Let . Then becomes .
We can use the difference of two squares to get , and expand this to get .
Refactor this by completing the square to get , which has a minimum value of . The answer is thus .
Solution 3 (using calculus)
Similar to Solution 1, grouping the first and last terms and the middle terms, we get .
Letting , we get the expression . Now, we can find the critical points of to minimize the function:
To minimize the result, we use . Hence, the minimum is , so .
Note: The minimum/maximum point of a parabola occurs at .
Solution 4
The expression is negative when an odd number of the factors are negative. This happens when or . Plugging in or yields , which is very close to . .
Solution 5 (using the answer choices)
Using the answer choices, we know that , , and are impossible since can be negative (as seen when ). Plug in to see that it becomes , so round this to .
Video Solution
For those who want a video solution: https://www.youtube.com/watch?v=Mfa7j2BoNjI
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.