Difference between revisions of "2011 AMC 10A Problems/Problem 4"

(Problem)
Line 30: Line 30:
 
We see that every number in Y's sequence is two more than every corresponding number in X's sequence. Since there are 46 numbers in each sequence, the difference must be:
 
We see that every number in Y's sequence is two more than every corresponding number in X's sequence. Since there are 46 numbers in each sequence, the difference must be:
 
<math>46\cdot 2=\boxed{92}</math>
 
<math>46\cdot 2=\boxed{92}</math>
 +
 +
==Solution 3==
 +
 +
<cmath>\begin{align*}
 +
X&=10+12+14+\cdots +100 \\
 +
Y&=X-10+102 = X+92 \\
 +
Y-X &= (X+92)-X \\
 +
Y-X &= X-X+92 \\
 +
Y-X &= 0+92 \\
 +
Y-X &= \boxed{92} \quad \quad \textbf{(A)}\\
 +
\end{align*} </cmath>
 +
<math>\blacksquare</math>
 +
 +
- <math>\text{herobrine-india}</math>
 +
  
 
== See Also ==
 
== See Also ==
 
{{AMC10 box|year=2011|ab=A|num-b=3|num-a=5}}
 
{{AMC10 box|year=2011|ab=A|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:05, 23 January 2020

Problem

Let X and Y be the following sums of arithmetic sequences:

\begin{eqnarray*}X &=& 10+12+14+\cdots+100,\\ Y &=& 12+14+16+\cdots+102.\end{eqnarray*}

What is the value of $Y - X?$

$\textbf{(A)}\ 92\qquad\textbf{(B)}\ 98\qquad\textbf{(C)}\ 100\qquad\textbf{(D)}\ 102\qquad\textbf{(E)}\ 112$

Solution 1

We see that both sequences have equal numbers of terms, so reformat the sequence to look like:

\begin{align*} Y = \ &12 + 14 + \cdots + 100 + 102\\ X = 10 \ + \ &12 +  14 + \cdots + 100\\ \end{align*} From here it is obvious that $Y - X = 102 - 10 = \boxed{92 \ \mathbf{(A)}}$.

Note

Another way to see this is to let the sum $12+14+16+...+100=x.$ So, the sequences become \begin{align*} X = 10+x \\ Y= x+102 \\ \end{align*}

Like before, the difference between the two sequences is $Y-X=102-12=92.$

Solution 2

We see that every number in Y's sequence is two more than every corresponding number in X's sequence. Since there are 46 numbers in each sequence, the difference must be: $46\cdot 2=\boxed{92}$

Solution 3

\begin{align*} X&=10+12+14+\cdots +100 \\ Y&=X-10+102 = X+92 \\  Y-X &= (X+92)-X \\  Y-X &= X-X+92 \\  Y-X &= 0+92 \\  Y-X &= \boxed{92} \quad \quad \textbf{(A)}\\ \end{align*} $\blacksquare$

- $\text{herobrine-india}$


See Also

2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png