Difference between revisions of "2019 AMC 10A Problems/Problem 24"
m (→Solution 1) |
m (changed headers) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A) }243\qquad\textbf{(B) }244\qquad\textbf{(C) }245\qquad\textbf{(D) }246\qquad\textbf{(E) } 247</math> | <math>\textbf{(A) }243\qquad\textbf{(B) }244\qquad\textbf{(C) }245\qquad\textbf{(D) }246\qquad\textbf{(E) } 247</math> | ||
− | ==Solution 1== | + | ==Solution== |
+ | ===Solution 1=== | ||
Multiplying both sides by <math>(s-p)(s-q)(s-r)</math> yields | Multiplying both sides by <math>(s-p)(s-q)(s-r)</math> yields | ||
<cmath>1 = A(s-q)(s-r) + B(s-p)(s-r) + C(s-p)(s-q)</cmath> | <cmath>1 = A(s-q)(s-r) + B(s-p)(s-r) + C(s-p)(s-q)</cmath> | ||
Line 13: | Line 14: | ||
''Note'': this process of substituting in the 'forbidden' values in the original identity is a standard technique for partial fraction decomposition, as taught in calculus classes. | ''Note'': this process of substituting in the 'forbidden' values in the original identity is a standard technique for partial fraction decomposition, as taught in calculus classes. | ||
− | ==Solution 2 (limits)== | + | ===Solution 2 (limits)=== |
Multiplying by <math>(s-p)</math> on both sides, we find that | Multiplying by <math>(s-p)</math> on both sides, we find that | ||
<cmath>\frac{s-p}{s^3 - 22s^2 + 80s - 67} = A + \frac{B(s-p)}{s-q} + \frac{C(s-p)}{s-r}</cmath> | <cmath>\frac{s-p}{s^3 - 22s^2 + 80s - 67} = A + \frac{B(s-p)}{s-q} + \frac{C(s-p)}{s-r}</cmath> |
Revision as of 18:09, 1 February 2020
Problem
Let , , and be the distinct roots of the polynomial . It is given that there exist real numbers , , and such that for all . What is ?
Solution
Solution 1
Multiplying both sides by yields As this is a polynomial identity, and it is true for infinitely many , it must be true for all (since a polynomial with infinitely many roots must in fact be the constant polynomial ). This means we can plug in to find that . Similarly, we can find and . Summing them up, we get that By Vieta's Formulas, we know that and . Thus the answer is .
Note: this process of substituting in the 'forbidden' values in the original identity is a standard technique for partial fraction decomposition, as taught in calculus classes.
Solution 2 (limits)
Multiplying by on both sides, we find that As , notice that the and terms on the right will cancel out and we will be left with only . Hence, , which by L'Hôpital's rule becomes . We can reason similarly to find and . Adding up the reciprocals and using Vieta's Formulas, we have that
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.