Difference between revisions of "Asymptote: Drawing"
Mathnerdnair (talk | contribs) (→Circles) |
(→Lines) |
||
Line 25: | Line 25: | ||
</asy> | </asy> | ||
− | + | asy] | |
− | + | void shademe(pair A) { | |
− | + | fill(A--(A+(1,0))--(A+(1,1))--(A+(0,1))--cycle,gray(0.8)); | |
− | + | } | |
− | + | size(90); | |
− | + | shademe((0,1)); | |
− | + | shademe((1,0)); | |
− | + | for(int i=0;i<=2;i+=1){ | |
− | + | draw((i,0)--(i,2)); | |
− | + | draw((0,i)--(2,i)); | |
− | + | } | |
− | + | label("<math>60\%</math>",(0,1.5),W); | |
− | + | label("<math>25\%</math>", (0,0.5), W); | |
− | + | label("<math>33\frac{1}{3}\%</math>", (0.5,2),N); | |
− | < | + | label("<math>50\%</math>", (1.5,2),N); |
− | draw(( | + | [/asy] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | draw((0, | ||
− | |||
− | < | ||
− | |||
− | |||
− | </ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
==Circles== | ==Circles== |
Revision as of 13:19, 5 June 2021
Dots
Let us start off with the most basic of this basic command: drawing a dot.
To draw a dot, simply write the following code:
dot((0,0));
You can fix certain attributes to this dot, such as color:
dot((0,0),green);
asy] void shademe(pair A) { fill(A--(A+(1,0))--(A+(1,1))--(A+(0,1))--cycle,gray(0.8)); } size(90); shademe((0,1)); shademe((1,0)); for(int i=0;i<=2;i+=1){ draw((i,0)--(i,2)); draw((0,i)--(2,i)); } label("",(0,1.5),W); label("", (0,0.5), W); label("", (0.5,2),N); label("", (1.5,2),N); [/asy]
Circles
In this article, draw(circle((0,0),5));
We see that the first draw() command creates the circle, which uses the circle() command. Within the circle command, we see the center point is located at the cartesian plane point (0,0), and it has a radius of 5.
This code produces:
Once again, we can fix certain attributes to this code:
draw(circle((0,0),5),red+linewidth(1));
And we can fill the inside:
filldraw(circle((0,0),5),green,red+linewidth(1));
Ellipse
Another rounded figure we can create is the ellipse.
draw(ellipse((0,0),5,3));
In this case, the (0,0) is the center of the ellipse, the 5 is the length of the major axis and the 3 is the length of the minor axis. This results in:
Once again, we can fix attributes and fill the inside.