Difference between revisions of "1990 AIME Problems/Problem 15"

m
Line 1: Line 1:
{{empty}}
 
 
== Problem ==
 
== Problem ==
 +
Find <math>a_{}^{}x^5 + b_{}y^5</math> if the real numbers <math>a_{}^{}</math>, <math>b_{}^{}</math>, <math>x_{}^{}</math>, and <math>y_{}^{}</math> satisfy the equations
 +
<center><math>ax + by = 3^{}_{},</math></center>
 +
<center><math>ax^2 + by^2 = 7^{}_{},</math></center>
 +
<center><math>ax^3 + by^3 = 16^{}_{},</math></center>
 +
<center><math>ax^4 + by^4 = 42^{}_{}.</math></center>
  
 
== Solution ==
 
== Solution ==

Revision as of 00:48, 2 March 2007

Problem

Find $a_{}^{}x^5 + b_{}y^5$ if the real numbers $a_{}^{}$, $b_{}^{}$, $x_{}^{}$, and $y_{}^{}$ satisfy the equations

$ax + by = 3^{}_{},$
$ax^2 + by^2 = 7^{}_{},$
$ax^3 + by^3 = 16^{}_{},$
$ax^4 + by^4 = 42^{}_{}.$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also