Difference between revisions of "2012 AMC 10B Problems/Problem 7"
Line 32: | Line 32: | ||
So we see that <math>48</math> is the number we need which is <math>\textbf{48(D)}</math> | So we see that <math>48</math> is the number we need which is <math>\textbf{48(D)}</math> | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/hRlDVKgAv9U | ||
+ | |||
+ | ~savannahsolver | ||
==See Also== | ==See Also== |
Revision as of 19:55, 27 January 2021
Problem 7
For a science project, Sammy observed a chipmunk and a squirrel stashing acorns in holes. The chipmunk hid 3 acorns in each of the holes it dug. The squirrel hid 4 acorns in each of the holes it dug. They each hid the same number of acorns, although the squirrel needed 4 fewer holes. How many acorns did the chipmunk hide?
Solution 1
Let be the number of acorns that both animals had.
So by the info in the problem:
Subtracting from both sides leaves
This is answer choice
Solution 2
Instead of an Algebraic Solution, we can just find a residue in the common multiples of and , so , the next largest is , the next is , and so on, with all of them being multiples of , now we can see that per every common multiple, we can see a pattern such as
so hole less.
so holes less.
so holes less.
so holes less.
So we see that is the number we need which is
Video Solution
~savannahsolver
See Also
2012 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.