Difference between revisions of "2016 AIME II Problems/Problem 7"
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | Letting <math>AI=a</math> and <math>IB=b</math>, we have <math>IJ^{2}=a^{2}+b^{2} \geq 1008</math> by | + | Letting <math>AI=a</math> and <math>IB=b</math>, we have <math>IJ^{2}=a^{2}+b^{2} \geq 1008</math> by AM-GM inequality. Also, since <math>EFGH||ABCD</math>, the angles that each square cuts another are equal, so all the triangles are formed by a vertex of a larger square and <math>2</math> adjacent vertices of a smaller square are similar. Therefore, the areas form a geometric progression, so since <math>2016=12^{2} \cdot 14</math>, we have the maximum area is <math>2016 \cdot \dfrac{11}{12} = 1848</math> (the areas of the squares from largest to smallest are <math>12^{2} \cdot 14, 11 \cdot 12 \cdot 14, 11^{2} \cdot 14</math> forming a geometric progression). |
Revision as of 22:44, 15 March 2021
Problem
Squares and have a common center and . The area of is 2016, and the area of is a smaller positive integer. Square is constructed so that each of its vertices lies on a side of and each vertex of lies on a side of . Find the difference between the largest and smallest positive integer values for the area of .
Solution
Letting and , we have by AM-GM inequality. Also, since , the angles that each square cuts another are equal, so all the triangles are formed by a vertex of a larger square and adjacent vertices of a smaller square are similar. Therefore, the areas form a geometric progression, so since , we have the maximum area is (the areas of the squares from largest to smallest are forming a geometric progression).
The minimum area is (every square is half the area of the square whose sides its vertices touch), so the desired answer is .
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.