Difference between revisions of "2014 AMC 12B Problems/Problem 20"

m (Solution: clarify step)
Line 11: Line 11:
 
The domain of the LHS implies that <cmath>40<x<60</cmath> Begin from the left hand side
 
The domain of the LHS implies that <cmath>40<x<60</cmath> Begin from the left hand side
 
<cmath>\log_{10}[(x-40)(60-x)]<2</cmath>
 
<cmath>\log_{10}[(x-40)(60-x)]<2</cmath>
 +
<cmath>(x-40)(60-x)<100</cmath>
 
<cmath>-x^2+100x-2500<0</cmath>
 
<cmath>-x^2+100x-2500<0</cmath>
 
<cmath>(x-50)^2>0</cmath>
 
<cmath>(x-50)^2>0</cmath>

Revision as of 11:17, 1 November 2021

Problem

For how many positive integers $x$ is $\log_{10}(x-40) + \log_{10}(60-x) < 2$ ?

$\textbf{(A) }10\qquad \textbf{(B) }18\qquad \textbf{(C) }19\qquad \textbf{(D) }20\qquad \textbf{(E) }\text{infinitely many}\qquad$

Solution

The domain of the LHS implies that \[40<x<60\] Begin from the left hand side \[\log_{10}[(x-40)(60-x)]<2\] \[(x-40)(60-x)<100\] \[-x^2+100x-2500<0\] \[(x-50)^2>0\] \[x \not = 50\] Hence, we have integers from 41 to 49 and 51 to 59. There are $\boxed{\textbf{(B)} 18}$ integers.

Video Solution

https://youtu.be/RdIIEhsbZKw?t=1088

~ pi_is_3.14

See also

2014 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png