Difference between revisions of "2021 AMC 10A Problems/Problem 11"

(Solution)
Line 8: Line 8:
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
==Video Solution==
 +
https://www.youtube.com/watch?v=XBfRVYx64dA&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=10
 +
 +
~North America Math Contest Go Go Go
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021|ab=A|num-b=10|num-a=12}}
 
{{AMC10 box|year=2021|ab=A|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:38, 14 February 2021

Problem

For which of the following integers $b$ is the base-$b$ number $2021_b - 221_b$ not divisible by $3$?

$\textbf{(A)} ~3 \qquad\textbf{(B)} ~4\qquad\textbf{(C)} ~6\qquad\textbf{(D)} ~7\qquad\textbf{(E)} ~8$

Solution

We have \[2021_b - 221_b = 2000_b - 200_b = 2b^3 - 2b^2 = 2b^2(b-1).\] This expression is divisible by $3$ unless $b\equiv2\pmod{3}.$ The only choice congruent to $2$ modulo $3$ is $\boxed{\textbf{(E)} ~8}.$

~MRENTHUSIASM

Video Solution

https://www.youtube.com/watch?v=XBfRVYx64dA&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=10

~North America Math Contest Go Go Go

See Also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png