Difference between revisions of "G285 2021 Summer Problem Set"
Geometry285 (talk | contribs) m |
Geometry285 (talk | contribs) m |
||
Line 23: | Line 23: | ||
==Problem 4== | ==Problem 4== | ||
− | + | <math>16</math> people are attending a hotel conference, <math>8</math> of which are executives, and <math>8</math> of which are speakers. Each person is designated a seat at one of <math>4</math> round tables, each containing <math>4</math> seats. If executives must sit at least one speaker and executive, there are <math>N</math> ways the people can be seated. Find <math>\left \lfloor \sqrt{N} \right \rfloor</math>. Assume seats, people, and table rotations are distinguishable. | |
+ | |||
+ | <math>\textbf{(A)}\ 720 \qquad\textbf{(B)}\ 1440 \qquad\textbf{(C)}\ 2520 \qquad\textbf{(D)}\ 3456\qquad\textbf{(E)}\ 5760</math> | ||
− | + | [[G285 2021 Summer Problem Set Problem 4|Solution]] | |
==Problem 5== | ==Problem 5== | ||
Line 33: | Line 35: | ||
==Problem 6== | ==Problem 6== | ||
− | <math> | + | Let <math>ABCD</math> be a rectangle with <math>BC=6</math> and <math>AB=8</math>. Let points <math>M</math> and <math>N</math> lie on <math>ABCD</math> such that <math>M</math> is the midpoint of <math>BC</math> and <math>N</math> lies on <math>AD</math>. Let point <math>Q</math> be the center of the circumcircle of quadrilateral <math>MNOP</math> such that <math>O</math> and <math>P</math> lie on the circumcircle of <math>\triangle MNP</math> and <math>\triangle MNO</math> respectively, along with <math>OD \perp QO</math> and <math>MP \perp BP</math>. If the shortest distance between <math>Q</math> and <math>AB</math> is <math>3</math>, <math>\triangle AOQ</math> and <math>\triangle QBP</math> are degenerate, and <math>BP=AO</math>, find <math>25 \cdot OD \cdot PC</math> |
+ | |||
+ | <math>\textbf{(A)}\ 209 \qquad\textbf{(B)}\ 228 \qquad\textbf{(C)}\ 54\sqrt{57} \qquad\textbf{(D)}\ 90\sqrt{19} \qquad\textbf{(E)}\ 72\sqrt{57}</math> | ||
− | + | [[G285 2021 Summer Problem Set Problem 6|Solution]] | |
==Problem 7== | ==Problem 7== |
Revision as of 23:18, 25 June 2021
Welcome to the Birthday Problem Set! In this set, there are multiple choice AND free-response questions. Feel free to look at the solutions if you are stuck:
Contents
Problem 1
Find
Problem 2
Let If is a positive integer, find the sum of all values of such that for some constant .
Problem 3
groups of molecules are gathered in a lab. The scientists in the lab randomly assign the molecules into groups of . Within these groups, there will be distinguishable labels (Strong acid, weak acid, strong base, weak base, nonelectrolyte), and each molecule will randomly be assigned a label such that teams can be empty, and each label is unique in the group. Find the number of ways that the molecules can be arranged by the scientists.
Problem 4
people are attending a hotel conference, of which are executives, and of which are speakers. Each person is designated a seat at one of round tables, each containing seats. If executives must sit at least one speaker and executive, there are ways the people can be seated. Find . Assume seats, people, and table rotations are distinguishable.
Problem 5
Suppose is an equilateral triangle. Let points and lie on the extensions of and respectively such that and . If there exists a point outside of such that , and there exists a point outside outside of such that , the area can be represented as , where and are squarefree,. Find
Problem 6
Let be a rectangle with and . Let points and lie on such that is the midpoint of and lies on . Let point be the center of the circumcircle of quadrilateral such that and lie on the circumcircle of and respectively, along with and . If the shortest distance between and is , and are degenerate, and , find
Problem 7
Geometry285 is playing the game "Guess And Choose". In this game, Geometry285 selects a subset of not necessarily distinct integers from the set such that the sum of all elements in is . Each distinct is selected chronologically and placed in , such that , , , and so on. Then, the elements are randomly arranged. Suppose represents the total number of outcomes that a subset containing integers sums to . If distinct permutations of the same set are considered unique, find the remainder when is divided by .
Problem 8
Let , Let be the twelve roots that satisfies , find the least possible value of
Problem 9
Let circles and with centers and concur at points and such that , . Suppose a point on the extension of is formed such that and lines and intersect and at and respectively. If , the value of can be represented as , where and are relatively prime positive integers, and is square free. Find
Problem 10
Let for . Suppose makes for distinct prime factors . If for is where must satisfy that is an integer, and is divisible by the th and th triangular number. Find