Difference between revisions of "2015 AMC 10B Problems/Problem 19"
Mathboy282 (talk | contribs) (ridiculous statements; leading in the wrong direction; may easily confuse readers) |
Isabelchen (talk | contribs) |
||
Line 74: | Line 74: | ||
~LegionOfAvatars | ~LegionOfAvatars | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | Both solution 1 and 2 uses Pythagorean Theorem to prove <math>\triangle ABC</math> is isosceles right triangle. I'm going to prove <math>\triangle ABC</math> is isosceles right triangle without using Pythagorean Theorem. | ||
+ | |||
+ | <asy> | ||
+ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ | ||
+ | import graph; size(11.5cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -4.3, xmax = 18.7, ymin = -5.26, ymax = 6.3; /* image dimensions */ | ||
+ | |||
+ | draw((3.46,0.96)--(3.44,-3.36)--(8.02,-3.44)--cycle); | ||
+ | draw((3.46,0.96)--(8.02,-3.44)--(12.42,1.12)--(7.86,5.52)--cycle); | ||
+ | /* draw figures */ | ||
+ | draw((3.46,0.96)--(3.44,-3.36)); | ||
+ | draw((3.44,-3.36)--(8.02,-3.44)); | ||
+ | draw((8.02,-3.44)--(3.46,0.96)); | ||
+ | draw((3.46,0.96)--(-0.86,0.98)); | ||
+ | draw((-0.86,0.98)--(-0.88,-3.34)); | ||
+ | draw((-0.88,-3.34)--(3.44,-3.36)); | ||
+ | draw((3.46,0.96)--(8.02,-3.44)); | ||
+ | draw((8.02,-3.44)--(12.42,1.12)); | ||
+ | draw((12.42,1.12)--(7.86,5.52)); | ||
+ | draw((7.86,5.52)--(3.46,0.96)); | ||
+ | draw((5.74,-1.24)--(-0.86,0.98)); | ||
+ | draw((5.74,-1.24)--(-0.87,-1.18), linetype("4 4")); | ||
+ | draw((5.74,-1.24)--(7.86,5.52)); | ||
+ | draw((5.74,-1.24)--(10.14,3.32), linetype("4 4")); | ||
+ | draw(shift((5.82,-1.21))*xscale(6.99920709795045)*yscale(6.99920709795045)*arc((0,0),1,19.44457562540183,197.63600413408128), linetype("2 2")); | ||
+ | draw((8.02,-3.44)--(-0.86,0.98)); | ||
+ | draw((3.44,-3.36)--(7.86,5.52)); | ||
+ | draw((3.44,-3.36)--(5.74,-1.24)); | ||
+ | /* dots and labels */ | ||
+ | dot((3.46,0.96),dotstyle); | ||
+ | label("$A$", (3.2,1.06), NE * labelscalefactor); | ||
+ | dot((3.44,-3.36),dotstyle); | ||
+ | label("$C$", (3.14,-3.86), NE * labelscalefactor); | ||
+ | dot((8.02,-3.44),dotstyle); | ||
+ | label("$B$", (8.06,-3.8), NE * labelscalefactor); | ||
+ | dot((-0.86,0.98),dotstyle); | ||
+ | label("$Z$", (-1.34,1.12), NE * labelscalefactor); | ||
+ | dot((-0.88,-3.34),dotstyle); | ||
+ | label("$W$", (-1.48,-3.54), NE * labelscalefactor); | ||
+ | dot((12.42,1.12),dotstyle); | ||
+ | label("$X$", (12.5,1.24), NE * labelscalefactor); | ||
+ | dot((7.86,5.52),dotstyle); | ||
+ | label("$Y$", (7.94,5.64), NE * labelscalefactor); | ||
+ | dot((5.74,-1.24),dotstyle); | ||
+ | label("$O$", (5.52,-1.82), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | </asy> | ||
+ | |||
==See Also== | ==See Also== |
Revision as of 22:09, 4 October 2021
Problem
In , and . Squares and are constructed outside of the triangle. The points , and lie on a circle. What is the perimeter of the triangle?
Solution 1
The center of the circle lies on the intersection between the perpendicular bisectors of chords and . Therefore we know the center of the circle must also be the midpoint of the hypotenuse. Let this point be . Draw perpendiculars to and from , and connect and . . Let and . Then . Simplifying this gives . But by Pythagorean Theorem on , we know , because . Thus . So our equation simplifies further to . However , so , which means , or . Aha! This means is just an isosceles right triangle, so , and thus the perimeter is .
Solution 2
Let and (and we're given that ). Draw line segments and . Now we have cyclic quadrilateral
This means that opposite angles sum to . Therefore, . Simplifying carefully, we get . Similarly, = .
That means .
Setting up proportions, Cross-multiplying we get:
But also, by Pythagoras, , so
Therefore, is an isosceles right triangle. , so the perimeter is
~BakedPotato66
~LegionOfAvatars
Solution 3
Both solution 1 and 2 uses Pythagorean Theorem to prove is isosceles right triangle. I'm going to prove is isosceles right triangle without using Pythagorean Theorem.
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.