Difference between revisions of "2021 Fall AMC 12A Problems/Problem 9"
MRENTHUSIASM (talk | contribs) (Created page with "==Problem == A right rectangular prism whose surface area and volume are numerically equal has edge lengths <math>\log_{2}x, \log_{3}x,</math> and <math>\log_{4}x.</math> Wha...") |
MRENTHUSIASM (talk | contribs) |
||
Line 1: | Line 1: | ||
− | ==Problem == | + | ==Problem== |
A right rectangular prism whose surface area and volume are numerically equal has edge lengths <math>\log_{2}x, \log_{3}x,</math> and <math>\log_{4}x.</math> What is <math>x?</math> | A right rectangular prism whose surface area and volume are numerically equal has edge lengths <math>\log_{2}x, \log_{3}x,</math> and <math>\log_{4}x.</math> What is <math>x?</math> | ||
− | <math>\textbf{(A)}\ 2\sqrt{6} \qquad\textbf{(B)}\ 6\sqrt{6} \qquad\textbf{(C)}\ 24 \qquad\textbf{(D)} 48 \qquad\textbf{(E)}\ 576</math> | + | |
+ | <math>\textbf{(A)}\ 2\sqrt{6} \qquad\textbf{(B)}\ 6\sqrt{6} \qquad\textbf{(C)}\ 24 \qquad\textbf{(D)}\ 48 \qquad\textbf{(E)}\ 576</math> | ||
==Solution== | ==Solution== | ||
− | + | The surface area of this right rectangular prism is <math>2(\log_{2}x\log_{3}x+\log_{2}x\log_{4}x+\log_{3}x\log_{4}x).</math> | |
+ | |||
+ | The volume of this right rectangular prism is <math>\log_{2}x\log_{3}x\log_{4}x.</math> | ||
+ | Equating the numerical values of the surface area and the volume, we have <cmath>2(\log_{2}x\log_{3}x+\log_{2}x\log_{4}x+\log_{3}x\log_{4}x)=\log_{2}x\log_{3}x\log_{4}x.</cmath> | ||
+ | Dividing both sides by <math>\log_{2}x\log_{3}x\log_{4}x,</math> we get <cmath>2\left(\frac{1}{\log_{4}x}+\frac{1}{\log_{3}x}+\frac{1}{\log_{2}x}\right)=1. \hspace{15mm} (\bigstar)</cmath> | ||
+ | Recall that <math>\log_{b}a=\frac{1}{\log_{a}b}</math> and <math>\log_{b}\left(a^n\right)=n\log_{b}a,</math> so we rewrite <math>(\bigstar)</math> as | ||
+ | <cmath>\begin{align*} | ||
+ | 2(\log_{x}4+\log_{x}3+\log_{x}2)&=1 \\ | ||
+ | 2\log_{x}24&=1 \\ | ||
+ | \log_{x}576&=1 \\ | ||
+ | x&=\boxed{\textbf{(E)}\ 576}. | ||
+ | \end{align*}</cmath> | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
Revision as of 18:05, 23 November 2021
Problem
A right rectangular prism whose surface area and volume are numerically equal has edge lengths and What is
Solution
The surface area of this right rectangular prism is
The volume of this right rectangular prism is
Equating the numerical values of the surface area and the volume, we have Dividing both sides by we get Recall that and so we rewrite as ~MRENTHUSIASM
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.