Difference between revisions of "2021 Fall AMC 12A Problems/Problem 21"

(Solution)
(Solution)
Line 39: Line 39:
  
 
== Solution ==
 
== Solution ==
First realize that <math>\triangle BCY \sim \triangle DAX.</math> Thus, because <math>CY: XA = 2:3,</math> we can say that <math>BY = 2s</math> and <math>DX = 3s.</math> From the Pythagorean Theorem, we have <math>AB =(2s)^2 + 4^2 = 4s^2 + 16</math> and <math>CD = (3s)^2 + 3^2 = 9s^2 + 9.</math> Because <math>AB = CD,</math> from the problem statement, we have that <cmath>4s^2 + 16 = 9s^2 + 9.</cmath> Solving, gives <math>s = \frac{\sqrt{7}}{\sqrt{5}}.</math> To find the area of the trapezoid, we can compute the area of <math>\triangle ABC</math> and add it to the area of <math>\triangle ACD.</math> Thus the area of the trapezoid is <math>\frac{1}{2} \cdot 2 \cdot \frac{\sqrt{7}}{\sqrt{5}} \cdot 6 + \frac{1}{2} \cdot 3 \cdot \frac{\sqrt{7}}{\sqrt{5}} \cdot 6 = \frac{15\sqrt{7}}{{5}} = 3\sqrt{35}.</math> Thus the answer is <math>\boxed{\textbf {(C)} \: 3\sqrt{35}}.</math>
+
First realize that <math>\triangle BCY \sim \triangle DAX.</math> Thus, because <math>CY: XA = 2:3,</math> we can say that <math>BY = 2s</math> and <math>DX = 3s.</math> From the Pythagorean Theorem, we have <math>AB =(2s)^2 + 4^2 = 4s^2 + 16</math> and <math>CD = (3s)^2 + 3^2 = 9s^2 + 9.</math> Because <math>AB = CD,</math> from the problem statement, we have that <cmath>4s^2 + 16 = 9s^2 + 9.</cmath> Solving, gives <math>s = \frac{\sqrt{7}}{\sqrt{5}}.</math> To find the area of the trapezoid, we can compute the area of <math>\triangle ABC</math> and add it to the area of <math>\triangle ACD.</math> Thus the area of the trapezoid is <math>\frac{1}{2} \cdot 2 \cdot \frac{\sqrt{7}}{\sqrt{5}} \cdot 6 + \left(\frac{1}{2} \cdot 3 \cdot \frac{\sqrt{7}}{\sqrt{5}} \cdot 6 \right) = \frac{15\sqrt{7}}{{5}} = 3\sqrt{35}.</math> Thus the answer is <math>\boxed{\textbf {(C)} \: 3\sqrt{35}}.</math>
  
 
~NH14
 
~NH14

Revision as of 20:40, 23 November 2021

Problem

Let $ABCD$ be an isosceles trapezoid with $\overline{BC}\parallel \overline{AD}$ and $AB=CD$. Points $X$ and $Y$ lie on diagonal $\overline{AC}$ with $X$ between $A$ and $Y$, as shown in the figure. Suppose $\angle AXD = \angle BYC = 90^\circ$, $AX = 3$, $XY = 1$, and $YC = 2$. What is the area of $ABCD?$

[asy] size(10cm); usepackage("mathptmx"); import geometry; void perp(picture pic=currentpicture, pair O, pair M, pair B, real size=5, pen p=currentpen, filltype filltype = NoFill){ perpendicularmark(pic, M,unit(unit(O-M)+unit(B-M)),size,p,filltype); } pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),Y=(2,0),X=(3,0),A=(6,0),B=(2,sqrt(5.6)),D=(3,-sqrt(12.6)); draw(A--B--C--D--cycle,p); draw(A--C,p); draw(B--Y,p); draw(D--X,p); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(X,q); dot(Y,q); label("2",C--Y,S); label("1",Y--X,S); label("3",X--A,S); label("$A$",A,2*E); label("$B$",B,2*N); label("$C$",C,2*W); label("$D$",D,2*S); label("$Y$",Y,2*sqrt(2)*NE); label("$X$",X,2*N); perp(B,Y,C,8,p); perp(A,X,D,8,p); [/asy] $\textbf{(A)}\: 15\qquad\textbf{(B)} \: 5\sqrt{11}\qquad\textbf{(C)} \: 3\sqrt{35}\qquad\textbf{(D)} \: 18\qquad\textbf{(E)} \: 7\sqrt{7}$

Solution

First realize that $\triangle BCY \sim \triangle DAX.$ Thus, because $CY: XA = 2:3,$ we can say that $BY = 2s$ and $DX = 3s.$ From the Pythagorean Theorem, we have $AB =(2s)^2 + 4^2 = 4s^2 + 16$ and $CD = (3s)^2 + 3^2 = 9s^2 + 9.$ Because $AB = CD,$ from the problem statement, we have that \[4s^2 + 16 = 9s^2 + 9.\] Solving, gives $s = \frac{\sqrt{7}}{\sqrt{5}}.$ To find the area of the trapezoid, we can compute the area of $\triangle ABC$ and add it to the area of $\triangle ACD.$ Thus the area of the trapezoid is $\frac{1}{2} \cdot 2 \cdot \frac{\sqrt{7}}{\sqrt{5}} \cdot 6 + \left(\frac{1}{2} \cdot 3 \cdot \frac{\sqrt{7}}{\sqrt{5}} \cdot 6 \right) = \frac{15\sqrt{7}}{{5}} = 3\sqrt{35}.$ Thus the answer is $\boxed{\textbf {(C)} \: 3\sqrt{35}}.$

~NH14

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions