Difference between revisions of "De Moivre's Theorem"
Line 21: | Line 21: | ||
*If <math>n<0</math>, one must consider <math>n=-m</math> when <math>m</math> is a positive integer. | *If <math>n<0</math>, one must consider <math>n=-m</math> when <math>m</math> is a positive integer. | ||
− | \begin{align*} | + | %%\begin{align*} |
(\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m} \\ | (\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m} \\ | ||
&=\frac{1}{(\operatorname{cis} x)^{m}} \\ | &=\frac{1}{(\operatorname{cis} x)^{m}} \\ | ||
Line 28: | Line 28: | ||
&=\operatorname{cis}(-m x) \\ | &=\operatorname{cis}(-m x) \\ | ||
&=\operatorname{cis}(n x) | &=\operatorname{cis}(n x) | ||
− | \end{align*} | + | \end{align*}%% |
And thus, the formula proves true for all integral values of <math>n</math>. <math>\Box</math> | And thus, the formula proves true for all integral values of <math>n</math>. <math>\Box</math> |
Revision as of 02:05, 6 February 2022
DeMoivre's Theorem is a very useful theorem in the mathematical fields of complex numbers. It allows complex numbers in polar form to be easily raised to certain powers. It states that for and , .
Proof
This is one proof of De Moivre's theorem by induction.
- If , for , the case is obviously true.
- Assume true for the case . Now, the case of :
- Therefore, the result is true for all positive integers .
- If , the formula holds true because . Since , the equation holds true.
- If , one must consider when is a positive integer.
%%\begin{align*} (\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m} \\ &=\frac{1}{(\operatorname{cis} x)^{m}} \\ &=\frac{1}{\operatorname{cis}(m x)} \\ &=\cos (m x)-i \sin (m x) \quad \text { rationalization of the denominator } \\ &=\operatorname{cis}(-m x) \\ &=\operatorname{cis}(n x) \end{align*}%%
And thus, the formula proves true for all integral values of .
Note that from the functional equation where , we see that behaves like an exponential function. Indeed, Euler's identity states that . This extends De Moivre's theorem to all .