Difference between revisions of "British Flag Theorem"
(latex) |
|||
Line 2: | Line 2: | ||
<asy> | <asy> | ||
− | |||
size(200); | size(200); | ||
pair A,B,C,D,P; | pair A,B,C,D,P; | ||
Line 11: | Line 10: | ||
P=(124,85); | P=(124,85); | ||
draw(A--B--C--D--cycle); | draw(A--B--C--D--cycle); | ||
− | label(" | + | label("A",A,(-1,0)); |
dot(A); | dot(A); | ||
− | label(" | + | label("B",B,(0,-1)); |
dot(B); | dot(B); | ||
− | label(" | + | label("C",C,(1,0)); |
dot(C); | dot(C); | ||
− | label(" | + | label("D",D,(0,1)); |
dot(D); | dot(D); | ||
dot(P); | dot(P); | ||
− | label(" | + | label("P",P,(1,1)); |
draw((0,85)--(200,85)); | draw((0,85)--(200,85)); | ||
draw((124,0)--(124,150)); | draw((124,0)--(124,150)); | ||
− | label(" | + | label("w",(124,0),(0,-1)); |
− | label(" | + | label("x",(200,85),(1,0)); |
− | label(" | + | label("y",(124,150),(0,1)); |
− | label(" | + | label("z",(0,85),(-1,0)); |
dot((124,0)); | dot((124,0)); | ||
dot((200,85)); | dot((200,85)); |
Revision as of 16:16, 16 October 2007
The British flag theorem says that if a point P is chosen inside rectangle ABCD then .
The theorem also applies to points outside the rectangle, although the proof is harder to visualize in this case.
Proof
In Figure 1, by the Pythagorean theorem, we have:
Therefore:
This article is a stub. Help us out by expanding it.