Difference between revisions of "2022 AMC 10B Problems/Problem 7"
MRENTHUSIASM (talk | contribs) m (→Solution 1) |
Megaboy6679 (talk | contribs) m (→Solution 2) |
||
Line 16: | Line 16: | ||
==Solution 2== | ==Solution 2== | ||
− | Note that <math>k</math> must be an integer. | + | Note that <math>k</math> must be an integer. Using the [[quadratic formula]], <math>x=\frac{-k \pm \sqrt{k^2-144}}{2}.</math> Since <math>4</math> divides <math>144</math> evenly, <math>k</math> and <math>k^2-144</math> have the same parity, so <math>x</math> is an integer if and only if <math>k^2-144</math> is a perfect square. |
− | <math> | ||
− | Let <math>k^2-144=n^2.</math> Then, <math>(k+n)(k-n)=144.</math> Since <math>k</math> is an integer and <math>144</math> is even, <math>k+n</math> and <math>k-n</math> must both be even. Assuming that <math>k</math> is positive, we get <math>5</math> possible values of <math>k+n</math>, namely <math>2, 4, 8, 6, 12</math>, which will give distinct positive values of <math>k</math>, but <math>k+n=12</math> gives <math>k+n=k-n</math> and <math>n=0</math>, giving <math>2</math> identical integer roots. Therefore, there are <math>4</math> distinct positive values of <math>k.</math> Multiplying that by <math>2</math> to take the negative values into account, we get <math>4\cdot2=\boxed{\textbf{(B) }8}</math> values of <math>k | + | Let <math>k^2-144=n^2.</math> Then, <math>(k+n)(k-n)=144.</math> Since <math>k</math> is an integer and <math>144</math> is even, <math>k+n</math> and <math>k-n</math> must both be even. Assuming that <math>k</math> is positive, we get <math>5</math> possible values of <math>k+n</math>, namely <math>2, 4, 8, 6, 12</math>, which will give distinct positive values of <math>k</math>, but <math>k+n=12</math> gives <math>k+n=k-n</math> and <math>n=0</math>, giving <math>2</math> identical integer roots. Therefore, there are <math>4</math> distinct positive values of <math>k.</math> Multiplying that by <math>2</math> to take the negative values into account, we get <math>4\cdot2=\boxed{\textbf{(B) }8}</math> values of <math>k</math>. |
~pianoboy | ~pianoboy |
Revision as of 01:04, 29 January 2023
- The following problem is from both the 2022 AMC 10B #7 and 2022 AMC 12B #4, so both problems redirect to this page.
Contents
Problem
For how many values of the constant will the polynomial have two distinct integer roots?
Solution 1
Let and be the roots of By Vieta's Formulas, we have and
It follows that and must be distinct factors of The possibilities of are Each unordered pair gives a unique value of Therefore, there are values of namely
~stevens0209 ~MRENTHUSIASM ~
Solution 2
Note that must be an integer. Using the quadratic formula, Since divides evenly, and have the same parity, so is an integer if and only if is a perfect square.
Let Then, Since is an integer and is even, and must both be even. Assuming that is positive, we get possible values of , namely , which will give distinct positive values of , but gives and , giving identical integer roots. Therefore, there are distinct positive values of Multiplying that by to take the negative values into account, we get values of .
~pianoboy
Solution 3 (Pythagorean Triples)
Proceed similar to Solution 2 and deduce that the discriminant of must be a perfect square greater than 0 to satisfy all given conditions. Seeing something like might remind us of a right triangle where k is the hypotenuse, and 12 is a leg. There are four ways we could have this: a triangle, a triangle, a triangle, and a triangle. Multiply by two to account for negative k values (since k is being squared) and our answer is .
Video Solution 1
~Education, the Study of Everything
See Also
2022 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2022 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.