Difference between revisions of "2022 AMC 12A Problems/Problem 23"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) |
||
Line 13: | Line 13: | ||
It is clear that <math>L_n\equiv0\pmod{p},</math> so we test whether <math>\sum_{i=1}^{n}\frac{L_n}{i}\equiv0\pmod{p}.</math> Note that <cmath>\sum_{i=1}^{n}\frac{L_n}{i} \equiv \sum_{i=1}^{\left\lfloor\tfrac np\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p^e) \equiv \sum_{i=1}^{\left\lfloor\tfrac np\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p).</cmath> | It is clear that <math>L_n\equiv0\pmod{p},</math> so we test whether <math>\sum_{i=1}^{n}\frac{L_n}{i}\equiv0\pmod{p}.</math> Note that <cmath>\sum_{i=1}^{n}\frac{L_n}{i} \equiv \sum_{i=1}^{\left\lfloor\tfrac np\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p^e) \equiv \sum_{i=1}^{\left\lfloor\tfrac np\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p).</cmath> | ||
We construct the following table: | We construct the following table: | ||
− | <cmath>\begin{array}{c| | + | <cmath>\begin{array}{c|l|c|c} |
− | + | \textbf{Case} & \hspace{22.75mm}\textbf{Sum} & \textbf{Interval of }n & \boldsymbol{\stackrel{?}{\equiv}0\ (\operatorname{mod} \ p)} \\ [0.5ex] | |
− | |||
\hline\hline | \hline\hline | ||
− | + | & & & \\ [-2ex] | |
− | 1 & 2 & | + | v_2(L_n)=1 & L_n/2 & [2,3] & \\ |
− | & & | + | v_2(L_n)=2 & L_n/4 & [4,7] & \\ |
− | & | + | v_2(L_n)=3 & L_n/8 & [8,15] & \\ |
− | + | v_2(L_n)=4 & L_n/16 & [16,22] & \\ [0.5ex] | |
− | |||
\hline | \hline | ||
− | + | & & & \\ [-2ex] | |
− | + | v_3(L_n)=1 & L_n/3 & [3,5] & \\ | |
− | & & | + | & L_n/3 + L_n/6 & [6,8] & \\ |
− | & & | + | v_3(L_n)=2 & L_n/9 & [9,17] & \\ |
− | & & | + | & L_n/9 + L_n/18 & [18,22] & \\ [0.5ex] |
\hline | \hline | ||
− | + | & & & \\ [-2ex] | |
− | + | v_5(L_n)=1 & L_n/5 & [5,9] & \\ | |
− | & & | + | & L_n/5 + L_n/10 & [10,14] & \\ |
− | & & | + | & L_n/5 + L_n/10 + L_n/15 & [15,19] & \\ |
+ | & L_n/5 + L_n/10 + L_n/15 + L_n/20 & [20,22] & \\ [0.5ex] | ||
\hline | \hline | ||
− | + | & & & \\ [-2ex] | |
− | + | v_7(L_n)=1 & L_n/7 & 1 & \\ | |
− | & | + | & L_n/7 + L_n/14 & & \checkmark \\ [0.5ex] |
− | |||
\hline | \hline | ||
− | & & & & \\ [-2ex] | + | & & & \\ [-2ex] |
− | \ | + | v_{11}(L_n)=1 & L_n/11 & 1 & \\ [0.5ex] |
− | & & \ | + | \hline |
+ | & & & \\ [-2ex] | ||
+ | v_{13}(L_n)=1 & L_n/13 & 1 & \\ [0.5ex] | ||
+ | \hline | ||
+ | & & & \\ [-2ex] | ||
+ | v_{17}(L_n)=1 & L_n/17 & 1 & \\ [0.5ex] | ||
+ | \hline | ||
+ | & & & \\ [-2ex] | ||
+ | v_{19}(L_n)=1 & L_n/19 & 1 & \\ [0.5ex] | ||
\end{array}</cmath> | \end{array}</cmath> | ||
Revision as of 00:05, 4 January 2023
Problem
Let and be the unique relatively prime positive integers such that Let denote the least common multiple of the numbers . For how many integers with is ?
Solution 1
We are given that Since we need
For all primes such that let be the largest power of that is a factor of
It is clear that so we test whether Note that We construct the following table:
Solution 2
We will use the following lemma to solve this problem.
Denote by the prime factorization of . For any , denote , where and are relatively prime. Then if and only if for any , is not a multiple of .
Now, we use the result above to solve this problem.
Following from this lemma, the list of with and is
Therefore, the answer is .
Note: Detailed analysis of this problem (particularly the motivation and the proof of the lemma above) can be found in my video solution below.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~MathProblemSolvingSkills.com
See Also
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.