Difference between revisions of "2022 AMC 10A Problems/Problem 1"
(→Problem) |
MRENTHUSIASM (talk | contribs) |
||
Line 1: | Line 1: | ||
{{duplicate|[[2022 AMC 10A Problems/Problem 1|2022 AMC 10A #1]] and [[2022 AMC 12A Problems/Problem 1|2022 AMC 12A #1]]}} | {{duplicate|[[2022 AMC 10A Problems/Problem 1|2022 AMC 10A #1]] and [[2022 AMC 12A Problems/Problem 1|2022 AMC 12A #1]]}} | ||
− | + | ==Problem== | |
− | <cmath> | + | What is the value of <cmath>3+\frac{1}{3+\frac{1}{3+\frac13}}?</cmath> |
+ | <math>\textbf{(A)}\ \frac{31}{10}\qquad\textbf{(B)}\ \frac{49}{15}\qquad\textbf{(C)}\ \frac{33}{10}\qquad\textbf{(D)}\ \frac{109}{33}\qquad\textbf{(E)}\ \frac{15}{4}</math> | ||
== Solution 1 == | == Solution 1 == |
Revision as of 18:00, 24 May 2023
- The following problem is from both the 2022 AMC 10A #1 and 2022 AMC 12A #1, so both problems redirect to this page.
Contents
Problem
What is the value of
Solution 1
We have ~MRENTHUSIASM
Solution 2
Continued fractions are expressed as where ~lopkiloinm
Solution 3
It is well known that for continued fractions of form , the denominator and numerator are solutions to the Diophantine equation . So for this problem, the denominator and numerator are solutions to the Diophantine equation . That leaves two answers. Since the number of 's in the continued fraction is odd, we further narrow it down to , which only leaves us with answer and that is which means .
~lopkiloinm
Video Solution 1 (Quick and Easy)
~Education, the Study of Everything
Video Solution 2
~Charles3829
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.