Difference between revisions of "1999 AHSME Problems/Problem 25"
m (→Solution 2) |
m (→Solution) |
||
Line 8: | Line 8: | ||
<math>\textrm{(A)} \ 8 \qquad \textrm{(B)} \ 9 \qquad \textrm{(C)} \ 10 \qquad \textrm{(D)} \ 11 \qquad \textrm{(E)} \ 12</math> | <math>\textrm{(A)} \ 8 \qquad \textrm{(B)} \ 9 \qquad \textrm{(C)} \ 10 \qquad \textrm{(D)} \ 11 \qquad \textrm{(E)} \ 12</math> | ||
− | == Solution == | + | == Solution 1(Modular Functions)== |
Multiply out the <math>7!</math> to get | Multiply out the <math>7!</math> to get | ||
Revision as of 12:09, 23 June 2023
Contents
Problem
There are unique integers such that
where for . Find .
Solution 1(Modular Functions)
Multiply out the to get
By Wilson's Theorem (or by straightforward division), , so . Then we move to the left and divide through by to obtain
We then repeat this procedure , from which it follows that , and so forth. Continuing, we find the unique solution to be (uniqueness is assured by the Division Theorem). The answer is .
Solution 2(Basic Algebra and Bashing)
We start by multiplying both sides by , and we get: After doing some guess and check, we find that the answer is .
~aopspandy
See also
1999 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Problem 26 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.