Difference between revisions of "2022 AMC 10A Problems/Problem 1"
(→Video Solution 3) |
Lopkiloinm (talk | contribs) (→Solution 2) |
||
Line 35: | Line 35: | ||
&=\boxed{\textbf{(D)}\ \frac{109}{33}} | &=\boxed{\textbf{(D)}\ \frac{109}{33}} | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
+ | ~lopkiloinm | ||
+ | |||
+ | == Solution 3 == | ||
+ | |||
+ | It is well known that for continued fractions of form <math>n+\frac{1}{n+\cdots}</math>, the denominator <math>y</math> and numerator <math>x</math> are solutions to the Diophantine equation <math>(n^2+4)\left(\frac{y}{2}\right)^2-\left(x-\frac{ny}{2}\right)^2=\pm{1}</math>. So for this problem, the denominator <math>y</math> and numerator <math>x</math> are solutions to the Diophantine equation <math>13\left(\frac{y}{2}\right)^2-\left(x-\frac{3y}{2}\right)^2=\pm{1}</math>. That leaves two answers. Since the number of <math>1</math>'s in the continued fraction is odd, we further narrow it down to <math>13\left(\frac{y}{2}\right)^2-\left(x-\frac{3y}{2}\right)^2=-1</math>, which only leaves us with <math>1</math> answer and that is <math>(x,y)=(109,33)</math> which means <math>\boxed{\textbf{(D)}\ \frac{109}{33}}</math>. | ||
~lopkiloinm | ~lopkiloinm | ||
Revision as of 19:00, 24 November 2023
- The following problem is from both the 2022 AMC 10A #1 and 2022 AMC 12A #1, so both problems redirect to this page.
Contents
Problem
What is the value of
Solution 1
We have ~MRENTHUSIASM
Solution 2
Continued fractions with integer parts and numerators all can be calculated as where
~lopkiloinm
Solution 3
It is well known that for continued fractions of form , the denominator and numerator are solutions to the Diophantine equation . So for this problem, the denominator and numerator are solutions to the Diophantine equation . That leaves two answers. Since the number of 's in the continued fraction is odd, we further narrow it down to , which only leaves us with answer and that is which means . ~lopkiloinm
Video Solution 1
~Education, the Study of Everything
Video Solution 2
~Charles3829
Video Solution 3
https://www.youtube.com/watch?v=7yAh4MtJ8a8&t=222s
~Math-X
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.