Difference between revisions of "2005 AIME II Problems/Problem 14"
(solution / asy) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In triangle <math> ABC, AB=13, BC=15, </math> and <math>CA = 14. </math> Point <math> D </math> is on <math> \overline{BC} </math> with <math> CD=6. </math> Point <math> E </math> is on <math> \overline{BC} </math> such that <math> \angle BAE\cong \angle CAD. </math> Given that <math> BE=\frac pq </math> where <math> p </math> and <math> q </math> are relatively prime positive integers, find <math> q. </math> | + | In [[triangle]] <math> ABC, AB=13, BC=15, </math> and <math>CA = 14. </math> Point <math> D </math> is on <math> \overline{BC} </math> with <math> CD=6. </math> Point <math> E </math> is on <math> \overline{BC} </math> such that <math> \angle BAE\cong \angle CAD. </math> Given that <math> BE=\frac pq </math> where <math> p </math> and <math> q </math> are relatively prime positive integers, find <math> q. </math> |
== Solution == | == Solution == | ||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black + linewidth(0.7); pen f = fontsize(10); | ||
+ | pair C = (0,0), B=(15,0), A=IP(CR(B,13), CR(C,14)), D=(6,0), E = (4410/463,0); | ||
+ | D(MP("A",A,N,f)--MP("B",B,f)--MP("C",C,f)--A--MP("D",D,f)--A--MP("E",E,f)); | ||
+ | MP("6",(D+C)/2,f);MP("13",(A+B)/2,NE,f);MP("14",(A+C)/2,NW,f);MP("9",(D+B)/2,N,f); | ||
+ | D(anglemark(C,A,D,50)); D(anglemark(E,A,B,50)); | ||
+ | </asy></center> | ||
− | + | By the [[Law of Sines]] and since <math>\angle BAE = \angle CAD, \angle BAD = \angle CAE</math>, we have | |
− | == | + | <center><math>\begin{align*} |
+ | \frac{CD \cdot CE}{AC^2} &= \frac{\sin CAD}{\sin ADC} \cdot \frac{\sin CAE}{\sin AEC} | ||
+ | = \frac{\sin BAE \sin BAD}{\sin ADB \sin AEB} | ||
+ | = \frac{\sin BAE}{\sin AEB} \cdot \frac{\sin BAD}{\sin ADB}\\ &= \frac{BE \cdot BD}{AB^2} | ||
+ | \end{align*} | ||
+ | </math></center> | ||
− | {{ | + | Substituting our knowns, we have <math>\frac{CE}{BE} = \frac{3 \cdot 14^2}{2 \cdot 13^2} = \frac{BC - BE}{BE} = \frac{15}{BE} - 1 \Longrightarrow BE = \frac{13^2 \cdot 15}{463}</math>. The answer is <math>q = \boxed{463}</math>. |
+ | == See also == | ||
+ | {{AIME box|year=2005|n=II|num-b=13|num-a=15|t=368562}} | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] |
Revision as of 17:18, 25 July 2008
Problem
In triangle and Point is on with Point is on such that Given that where and are relatively prime positive integers, find
Solution
By the Law of Sines and since , we have
\frac{CD \cdot CE}{AC^2} &= \frac{\sin CAD}{\sin ADC} \cdot \frac{\sin CAE}{\sin AEC}
= \frac{\sin BAE \sin BAD}{\sin ADB \sin AEB} = \frac{\sin BAE}{\sin AEB} \cdot \frac{\sin BAD}{\sin ADB}\\ &= \frac{BE \cdot BD}{AB^2}
\end{align*}$ (Error compiling LaTeX. Unknown error_msg)Substituting our knowns, we have . The answer is .
See also
2005 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |