Difference between revisions of "2013 AMC 8 Problems/Problem 22"

m (Solution)
(Solution)
Line 24: Line 24:
  
 
==Solution==
 
==Solution==
There are <math>61</math> vertical columns with a length of <math>32</math> toothpicks, and there are <math>33</math> horizontal rows with a length of <math>60</math> toothpicks. You can verify this by trying a smaller case, i.e. a <math>3 \times 4</math> grid of toothpicks, with <math>3 \times 3</math> and <math>2 \times 4</math>. Thus, our answer is <math>61\cdot 32 + 33 \cdot 60 = \boxed{\textbf{(E)}\ 3932}</math>.
+
There are <math>61</math> vertical columns with a length of <math>32</math> toothpicks, and there are <math>33</math> horizontal rows with a length of <math>60</math> toothpicks. You can verify this by trying a smaller case, i.e. a <math>3 \times 4</math> grid of toothpicks, with <math>3 \times 3</math> and <math>2
 +
\times 4</math>.
 +
 
 +
Thus, our answer is <math>61\cdot 32 + 33 \cdot 60 = \boxed{\textbf{(E)}\ 3932}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=21|num-a=23}}
 
{{AMC8 box|year=2013|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:48, 17 January 2024

Problem

Toothpicks are used to make a grid that is $60$ toothpicks long and $32$ toothpicks wide. How many toothpicks are used altogether?

[asy] picture corner; draw(corner,(5,0)--(35,0)); draw(corner,(0,-5)--(0,-35)); for (int i=0; i<3; ++i){for (int j=0; j>-2; --j){if ((i-j)<3){add(corner,(50i,50j));}}} draw((5,-100)--(45,-100)); draw((155,0)--(185,0),dotted+linewidth(2)); draw((105,-50)--(135,-50),dotted+linewidth(2)); draw((100,-55)--(100,-85),dotted+linewidth(2)); draw((55,-100)--(85,-100),dotted+linewidth(2)); draw((50,-105)--(50,-135),dotted+linewidth(2)); draw((0,-105)--(0,-135),dotted+linewidth(2));[/asy]

$\textbf{(A)}\ 1920 \qquad \textbf{(B)}\ 1952 \qquad \textbf{(C)}\ 1980 \qquad \textbf{(D)}\ 2013 \qquad \textbf{(E)}\ 3932$

Video Solution for Problems 21-25

https://youtu.be/-mi3qziCuec

Video Solution

https://youtu.be/nNDdkv_zfOo ~savannahsolver

Solution

There are $61$ vertical columns with a length of $32$ toothpicks, and there are $33$ horizontal rows with a length of $60$ toothpicks. You can verify this by trying a smaller case, i.e. a $3 \times 4$ grid of toothpicks, with $3 \times 3$ and $2  \times 4$.

Thus, our answer is $61\cdot 32 + 33 \cdot 60 = \boxed{\textbf{(E)}\ 3932}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png